10.執(zhí)行如圖所示的程序框圖,若輸出的S=183,則判斷框內應填入的條件是( 。
A.k>7?B.k>6?C.k>5?D.k>4?

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸入S的值,條件框內的語句是決定是否結束循環(huán),模擬執(zhí)行程序即可得到答案.

解答 解:程序在運行過程中各變量值變化如下表:
            k   S    是否繼續(xù)循環(huán)
循環(huán)前 1   0
第一圈 2   2         是
第二圈 3   7         是
第三圈 4   18        是
第四圈 5   41        是
第五圈 6   88        是
第六圈 7   183       否
故退出循環(huán)的條件應為k>6?
故選:B.

點評 算法是新課程中的新增加的內容,也必然是新高考中的一個熱點,應高度重視.程序填空也是重要的考試題型,這種題考試的重點有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點考試的概率更大.此種題型的易忽略點是:不能準確理解流程圖的含義而導致錯誤.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)f(x)=$\frac{x}{x-1}$(x≥3)的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)f(x)=x+$\frac{4}{x-3}$,x∈(3,+∞)的最小值為( 。
A.3B.4C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在正項數(shù)列{an}中,a1=2,且點($\sqrt{a_n}$,$\sqrt{{a_{n-1}}}$)在直線x-$\sqrt{2}$y=0上,則前n項和Sn等于( 。
A.2n-1B.2n+1-2C.${2^{\frac{n}{2}}}-\sqrt{2}$D.${2^{\frac{n-2}{2}}}-\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知a,b,c分別為△ABC三個內角A,B,C的對邊,且滿足2bcosC=2a-c.
(Ⅰ)求B;            
(Ⅱ)若△ABC的面積為$\sqrt{3}$,b=2求a,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.對甲、乙兩名同學的學習成績進行抽樣分析,各抽5門功課,得到的觀測值如表:
8090857090
80100709080
問:(1)甲、乙的平均成績誰較好?
(2)誰的各門功課發(fā)展較平衡?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知鈍角α滿足cosα=-$\frac{3}{5}$,則tan(α+$\frac{π}{4}$)的值為$-\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.將函數(shù)$f(x)=3sin({2x+\frac{π}{3}})$的圖象向右平移$\frac{π}{2}$個單位長度,所得圖象對應的函數(shù)(  )
A.其中一條對稱軸方程為$x=-\frac{π}{6}$B.在區(qū)間$[{\frac{π}{12},\frac{7π}{12}}]$上單調遞增
C.當$x=\frac{π}{12}+kπ({k∈Z})$時取得最大值D.在區(qū)間$[{-\frac{π}{6},\frac{π}{3}}]$上單調遞增

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設函數(shù)f(x)=(x2-8x+c1)(x2-8x+c2)(x2-8x+c3)(x2-8x+c4),集合M={x|f(x)=0}={x1,x2,x3,…,x7}⊆N*,設c1≥c2≥c3≥c4則c1-c4=(  )
A.11B.13C.7D.9

查看答案和解析>>

同步練習冊答案