函數(shù)f(x)=x+
1
ax
在(-∞,-1)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A、[1,+∞)
B、(-∞,0)∪(0,1]
C、(0,1]
D、(-∞,0)∪[1,+∞)
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:求出函數(shù)的導(dǎo)數(shù),由題意可得f′(x)≥0在(-∞,-1)上恒成立.運(yùn)用參數(shù)分離可得
1
a
≤x2在(-∞,-1)上恒成立.運(yùn)用二次函數(shù)的最值,求出右邊的范圍即可得到.
解答: 解:函數(shù)f(x)=x+
1
ax
的導(dǎo)數(shù)為f′(x)=1-
1
ax2
,
由于f(x)在(-∞,-1)上單調(diào)遞增,
則f′(x)≥0在(-∞,-1)上恒成立.
即為
1
a
≤x2在(-∞,-1)上恒成立.
由于當(dāng)x<-1時(shí),x2>1,
則有
1
a
≤1,解得,a≥1或a<0.
故選D.
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性的運(yùn)用,考查運(yùn)用導(dǎo)數(shù)判斷單調(diào)性,以及不等式恒成立問(wèn)題轉(zhuǎn)化為求函數(shù)最值或范圍,屬于基礎(chǔ)題和易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,若
sinA
a
=
cosB
b
,則B的值為( 。
A、30°B、45°
C、30°D、30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
,
b
是平面內(nèi)兩個(gè)互相垂直的單位向量,若向量
c
滿(mǎn)足(
a
-
c
)•(
b
-
c
)=0,則|
c
|的最大值是( 。
A、1
B、2
C、
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)2x-y-1=0與直線(xiàn)x+my+3=0平行,則m的值為( 。
A、
1
2
B、-
1
2
C、-2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=
2
,|
b
|=
3
,|
a
+
b
|=2
2

(1)求:
a
b
;  
(2)若(
a
+
b
)⊥(
a
+k
b
),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)在[0,1]上是增函數(shù),在[1,+∞)上是減函數(shù),且f(3)=0,則滿(mǎn)足(x-1)f(x)<0的x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有11個(gè)人按2,2,2,2,3組合,有
 
種組合辦法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四個(gè)正數(shù)1,x,y,3中,前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,則x+y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(3x+
1
x
n的展開(kāi)式中各項(xiàng)系數(shù)和為1024,則展開(kāi)式中含x的5次冪的項(xiàng)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案