過雙曲線左焦點,傾斜角為的直線交雙曲線右支于點,若線段的中點在軸上,則此雙曲線的離心率為( )
A. B. C.3 D.
D
【解析】
試題分析:由于線段PF1的中點M落在y軸上,連接MF2,則|MF1|=|MF2|="|PM|=" |PF1|?△PF1F2為直角三角形,△PMF2為等邊三角形,于是|PF1|-|PF2|=|MF1|=2a,|F1F2|="2c=" |MF1|=2a?c= a,由c2=a2+b2可求得b= a,于是 雙曲線的漸近線方程可求。解:連接MF2,由過點 PF1作傾斜角為30°,線段PF1的中點M落在y軸上得:|MF1|=|MF2|═|PM|=|PF1|,∴△PMF2為等邊三角形,△PF1F2為直角三角形,∵是|PF1|-|PF2|=|MF1|=2a,|F1F2|=2c=|MF1|=2a,∴c=a,又c2=a2+b2,∴3a2=a2+b2,∴b=a,∴雙曲線的離心率為故選 D.
考點:雙曲線定義的靈活應(yīng)用
點評:本題考查直線與圓錐曲線的位置關(guān)系,關(guān)鍵是對雙曲線定義的靈活應(yīng)用及對三角形△PMF2為等邊三角形,△PF1F2為直角三角形的分析與應(yīng)用,屬于難題.
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省馬鞍山高三三模文科數(shù)學(xué)試卷(解析版) 題型:選擇題
過雙曲線左焦點,傾斜角為的直線交雙曲線右支于點,若線段的中點在軸上,則此雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年西藏拉薩中學(xué)高三第七次月考考試理科數(shù)學(xué) 題型:選擇題
過橢圓左焦點且傾斜角為的直線交橢圓于兩點,若,則橢圓的離心率等于
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com