【題目】設(shè)函數(shù)f(x)=|x+1|+x﹣m的最小值是﹣3.
(1)求m的值;
(2)若 ,是否存在正實數(shù)a,b滿足 ?并說明理由.
【答案】
(1)解:因為 ,x≥﹣1時,函數(shù)是增函數(shù),
所以ymin=﹣1﹣m=﹣3m=2
(2)解:∵ ,∴ ,
∵ ,
∴ ,矛盾.
所以不存在正實數(shù)a,b滿足條件
【解析】(1)化簡函數(shù)為分段函數(shù),利用函數(shù)的單調(diào)性求解函數(shù)的最小值,然后求解m即可.(2)利用 ,轉(zhuǎn)化推出ab的范圍,化簡 ,推出ab的范圍,即可得到結(jié)果.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的最值及其幾何意義的相關(guān)知識,掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲担
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù)y= sin(2x﹣ )的圖象,只需將函數(shù)y=sinxcosx的圖象( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面上,點A、C為射線PM上的兩點,點B、D為射線PN上的兩點,則有 (其中S△PAB、S△PCD分別為△PAB、△PCD的面積);空間中,點A、C為射線PM上的兩點,點B、D為射線PN上的兩點,點E、F為射線PL上的兩點,則有 =(其中VP﹣ABE、VP﹣CDF分別為四面體P﹣ABE、P﹣CDF的體積).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由于霧霾日趨嚴(yán)重,政府號召市民乘公交出行.但公交車的數(shù)量太多會造成資源的浪費,太少又難以滿足乘客需求.為此,某市公交公司在某站臺的60名候車乘客中進行隨機抽樣,共抽取10人進行調(diào)查反饋,所選乘客情況如下表所示:
組別 | 候車時間(單位:min) | 人數(shù) |
一 | [0,5) | 1 |
二 | [5,10) | 5 |
三 | [10,15) | 3 |
四 | [15,20) | 1 |
(1)估計這60名乘客中候車時間少于10分鐘的人數(shù);
(2)現(xiàn)從這10人中隨機取3人,求至少有一人來自第二組的概率;
(3)現(xiàn)從這10人中隨機抽取3人進行問卷調(diào)查,設(shè)這3個人共來自X個組,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】渝州集團對所有員工進行了職業(yè)技能測試從甲、乙兩部門中各任選10名員工的測試成績(單位:分)數(shù)據(jù)的莖葉圖如圖所示.
(1)若公司決定測試成績高于85分的員工獲得“職業(yè)技能好能手”稱號,求從這20名員工中任選三人,其中恰有兩人獲得“職業(yè)技能好能手”的概率;
(2)公司結(jié)合這次測試成績對員工的績效獎金進行調(diào)整(績效獎金方案如表),若以甲部門這10人的樣本數(shù)據(jù)來估計該部門總體數(shù)據(jù),且以頻率估計概率,從甲部門所有員工中任選3名員工,記績效獎金不小于3a的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.
分?jǐn)?shù) | [60,70) | [70,80) | [80,90) | [90,100] |
獎金 | a | 2a | 3a | 4a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足an=3an﹣1+3n﹣1(n∈N* , n≥2), 已知a3=95.
(1)求a1 , a2;
(2)是否存在一個實數(shù)t,使得 ,且{bn}為等差數(shù)列?若存在,則求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+ )(x∈R,ω>0)的最小正周期為π,將y=f(x)的圖象向左平移|φ|個單位長度,所得函數(shù)y=f(x)為偶函數(shù)時,則φ的一個值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C: ,(θ為參數(shù)),在以O(shè)為極點,x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程2ρcosθ+ρsinθ﹣6=0.
(1)寫出曲線C的普通方程,直線l的直角坐標(biāo)方程;
(2)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|,不等式f(x)≤3的解集為[﹣1,5].
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若f(x)+f(x+5)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com