(本題13分)已知函數(shù)f (x) = ln(ex + a)(a為常數(shù))是實(shí)數(shù)集R上的奇函數(shù),函數(shù)g (x) =

f (x) + sinx是區(qū)間[1,1]上的減函數(shù).

(1)求a的值;

(2)若g (x)≤t2 +t + 1在x∈[1,1]上恒成立,求t的取值范圍;

(3)討論關(guān)于x的方程的根的個(gè)數(shù).

 

解析:(1)由于f (x) 是R上的奇函數(shù),f (0) = 0,故a = 0.……………………3分

(2)∵g (x)在[1,1]上單調(diào)遞減,∴時(shí)恒成立

∴只要

∴(t + 1)+ t2 + sin1 + 1≥0(其中≤1)恒成立.……………………5分

∴t≤1.………………………………………………………………………………8分

(3)由(1)知.∴方程為

令f1(x) =,f2(x) = x2 2ex + m,

當(dāng)x∈(0,e)時(shí),,∴在(0,e]上為增函數(shù);

當(dāng)x∈(e,+∞)時(shí),,∴在(e,+∞)上為減函數(shù);

當(dāng)x = e時(shí)

∴當(dāng)時(shí),即時(shí)方程無(wú)解.

當(dāng)時(shí),即時(shí)方程有一解.

當(dāng)時(shí),即時(shí)方程有二解.………………………………………13分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆陜西省師大附中、西工大附中高三第七次聯(lián)考理數(shù) 題型:解答題

(本題13分)
已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若單調(diào)增加,在單調(diào)減少,證明:<6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題13分)已知函數(shù)。

(Ⅰ)若,試判斷并證明的單調(diào)性;

(Ⅱ)若函數(shù)上單調(diào),且存在使成立,求的取值范圍;

(Ⅲ)當(dāng)時(shí),求函數(shù)的最大值的表達(dá)式。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省無(wú)為縣四高三考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分13分)已知函數(shù)f(x)=cos(-)+cos(),k∈Z,x∈R.

(1)求f(x)的最小正周期;

(2)求f(x)在[0,π)上的減區(qū)間;

(3)若f(α)=,α∈(0,),求tan(2α+)的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年福建省四地六校聯(lián)考高一第三次月考數(shù)學(xué)卷 題型:解答題

(本題13分)

已知函數(shù)

(1)用五點(diǎn)法畫(huà)出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;

(2)說(shuō)明此函數(shù)圖象可由的圖象經(jīng)怎樣的變換得到.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案