分析 按照n為奇數,偶數兩種情況討論,分離出參數a后化為函數最值問題求解即可.
解答 解:①當n為奇數時,設n=2k-1(k∈N*)
那么(-1)n•a<n+$\frac{9•(-1)^{n+1}}{n+1}$轉化為:-a<(2k-1)+$\frac{9•(-1)^{2k}}{2k}$
∴-a<2k-1+$\frac{9}{2k}$,(k∈N*)
a>1-(2k$+\frac{9}{2k}$)
∵2k$+\frac{9}{2k}$$≥2\sqrt{9}=6$,當且僅當k=$\frac{3}{2}$時取等號,
又∵k∈N*
∴當k=1時,2k$+\frac{9}{2k}$=$\frac{11}{2}$
當k=2時,2k$+\frac{9}{2k}$=$\frac{25}{4}$
可見當k=2時,取得最小值.
∴a>1-$\frac{25}{4}$=$-\frac{21}{4}$
所以a>$-\frac{21}{4}$恒成立.
②當n為偶數時,設n=2k(k∈N*)
那么(-1)n•a<n+$\frac{9•(-1)^{n+1}}{n+1}$轉化為:a<2k-$\frac{9}{2k+1}$
∴a<2k+1-$\frac{9}{2k+1}$-1,(k∈N*)
2k+1-$\frac{9}{2k+1}$≥0,
所以a<-1時恒成立.
綜上所述:a的取值范圍是($-\frac{21}{4},-1$)
故答案為($-\frac{21}{4},-1$)
點評 本題考查了函數恒成立,不等式知識點,考查轉化思想,分類討論思想.屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 75° | B. | 15° | C. | 75°或15° | D. | 90° |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
分組 | 頻數 | 頻率 |
[156,160) | ||
[160,164) | 4 | |
[164,168) | 12 | |
[168,172) | 12 | |
[172,176) | 0.26 | |
[176,180] | 6 | |
合計 | 50 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 12π | B. | $4\sqrt{3}π$ | C. | $12\sqrt{3}π$ | D. | $\frac{4}{3}\sqrt{3}π$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,-1) | B. | (-1,2) | C. | (-∞,-1)∪(2,+∞) | D. | (2,+∞) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com