精英家教網 > 高中數學 > 題目詳情
如下圖,三棱錐S—ABC中,SA⊥平面ABC,平面SAB⊥平面SBC,求證:ABBC

 

答案:
解析:

解:如圖,面AND分別交α、βMCND,因為αβ,

MCND,同理MFNE,得

FMCEND,

NDMC=(m+p)mENFMn(n+p)

SENDSFMC

SEND×SFMC

·(m+p)(n+p)=(m+p)2

∴△END的面積為(m+p)2平方單位.

 

 

 

 


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:022

    如下圖,三棱錐SABC中,AC=BC,∠ACB=90°,SC⊥平面ABC,DAB的中點,則圖中以SA、B、CD中的三點為頂點的所有三角形中,不是直角三角形的是___________.(有幾個,寫幾個)

 

查看答案和解析>>

科目:高中數學 來源:數學教研室 題型:022

    如下圖,三棱錐SABC中,AC=BC,∠ACB=90°,SC⊥平面ABC,DAB的中點,則圖中以SA、B、CD中的三點為頂點的所有三角形中,不是直角三角形的是___________.(有幾個,寫幾個)

 

查看答案和解析>>

科目:高中數學 來源:導學大課堂必修二數學蘇教版 蘇教版 題型:044

如下圖,正三棱錐S-ABC中,底面的邊長是3,棱錐的側面積等于底面積的2倍,M是BC的中點,求:

(1)的值;

(2)二面角S-BC-A的體積;

(3)正三棱錐S-ABC的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:013

(汕頭聯考模擬)如下圖所示,在正三棱錐SABC(底面是正多邊形,頂點在底面上的射影是底面的中心的棱錐為正棱錐),MN分別是棱SC,BC的中點,且MNAM,若側棱,則此正三棱錐SABC外接球的表面積是

[  ]

A45π

B32π

C12π

D36π

查看答案和解析>>

科目:高中數學 來源: 題型:

如下圖所示,已知正三棱錐S—ABC的高SO=h,斜高SM=l,求經過SO的中點平行于底面的截面△A′B′C′的面積.

查看答案和解析>>

同步練習冊答案