【題目】某地干旱少雨,農(nóng)作物受災(zāi)嚴(yán)重,為了使今后保證農(nóng)田灌溉,當(dāng)?shù)卣疀Q定建一橫斷面為等腰梯形的水渠(水渠的橫斷面如圖所示),為減少水的流失量,必須減少水與渠壁的接觸面,若水渠橫斷面的面積設(shè)計為定值S,渠深為h,則水渠壁的傾斜角α(0<α)為多大時,水渠中水的流失量最小?

【答案】時,水渠中水的流失量最小。

【解析】

試題分析:本題考查三角函數(shù)在實際問題中的應(yīng)用,根據(jù)題中條件分析,若要減少水的流失量,應(yīng)使水與渠壁的接觸面最小,即求AD+DC+CB的最小值,過B作BEDC,交DC于點E,在中,,,由圖可知:,又因為,所以,因此可以求得,于是得到,整理可以得到:,由于是自變量,S,h是已知量,所以要使函數(shù)值y最小,只需使的值最小即可。設(shè),u可看作(0,2)與(sinα,cosα)兩點連線的斜率,由于α∈(0,),

點(sinα,cosα)在曲線x2+y2=1(1<x<0,0<y<1)上運動,當(dāng)過(0,2)的直線與曲線相切時,直線斜率最小,此時切點為(,),則有sinα=,且cosα=,故當(dāng)α=時,水渠中水的流失量最。

試題解析:作BEDC于E,

在RtBEC中,BC=,CE=hcotα,

又ABCD=2CE=2hcotα,AB+CD=,

故CD=hcotα

設(shè)y=AD+DC+BC,

則y=hcotα+=+(0<α),

由于S與h是常量,欲使y最小,只需u=取最小值,

u可看作(0,2)與(sinα,cosα)兩點連線的斜率,

由于α∈(0,),

點(sinα,cosα)在曲線x2+y2=1

1<x<0,0<y<1)上運動,

當(dāng)過(0,2)的直線與曲線相切時,直線斜率最小,

此時切點為(,),

則有sinα=,且cosα=,

那么α=,

故當(dāng)α=時,水渠中水的流失量最小.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若命題“存在實數(shù)x,使得x2+(1﹣a)x+1<0”是真命題,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法不正確的是( )

A. 圓柱的側(cè)面展開圖是一個矩形

B. 圓錐過軸的截面是一個等腰三角形

C. 平行于圓臺底面的平面截圓臺,截面是圓面

D. 直角三角形繞它的一邊旋轉(zhuǎn)一周形成的曲面圍成的幾何體是圓錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)滿足:

(1),

(2)在區(qū)間內(nèi)有最大值無最小值,

(3)在區(qū)間內(nèi)有最小值無最大值,

4經(jīng)過。

1的解析式;

2,求值;

3不等式的解集不為空集,求實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察以下5個等式:

-1=-1

-1+3=2

-1+3-5=-3

-1+3-5+7=4

-1+3-5+7-9=-5

……

根據(jù)以上式子規(guī)律

1寫出第6個等式,并猜想第n個等式;n∈N*

2用數(shù)學(xué)歸納法證明上述所猜想的第n個等式成立n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近幾年騎車鍛煉越來越受到人們的喜愛,男女老少踴躍參加,我校課外活動小組利用春節(jié)放假時間進行社會實踐,對年齡段的人群隨機抽取人進行了一次你是否喜歡騎車鍛煉的問卷,將被調(diào)查人員分為喜歡騎車不喜歡騎車,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

1)補全頻率分布直方圖,并的值;

2)從歲年齡段的喜歡騎車中采用分層抽樣法抽取6人參加騎車鍛煉體驗活動,求其中選取2名領(lǐng)隊來自同一組的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)若函數(shù)的圖象與軸相鄰兩個交點間的距離為,且圖像的一條對稱軸是直線。

1)求的值;

2)求函數(shù)的單調(diào)增區(qū)間;

3)畫出函數(shù)在區(qū)間上的圖像。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是公比為正整數(shù)的等比數(shù)列,是等差數(shù)列,且,,.

(1)求數(shù)列的通項公式;

(2)設(shè)數(shù)列的前項和為.

試求最小的正整數(shù),使得當(dāng)時,都有成立;

是否存在正整數(shù) 使得成立?若存在,請求出所有滿足條件的;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場為吸引顧客消費推出一項優(yōu)惠活動.活動規(guī)則如下:消費額每滿100元可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置. 若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券. 例如:消費218元,可轉(zhuǎn)動轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.

1若某位顧客消費128元,求返券金額不低于30元的概率;

2若某位顧客恰好消費280元,并按規(guī)則參與了活動,他獲得返券的金額記為.求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案