8.已知函數(shù)$f(x)=\frac{1-x}{{1+{x^2}}}{e^x}$,x1,x2為兩不同實數(shù),當(dāng)f(x1)=f(x2)時,有( 。
A.x1+x2>0B.x1+x2<0C.x1+x2=0D.無法確定

分析 構(gòu)造函數(shù),利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性,即可得出結(jié)論.

解答 解:當(dāng)x<1時,由于$\frac{1-x}{1+{x}^{2}}$<0,ex>0,得到f(x)>0;同理,當(dāng)x>1時,f(x)<0.
當(dāng)f(x1)=f(x2)(x1≠x2)時,不妨設(shè)x1<x2
由題意可知:x1∈(-∞,0),x2∈(0,1).
下面證明:?x∈(0,1),f(x)<f(-x),即證(1-x)ex-$\frac{1+x}{{e}^{x}}$<0.
令g(x)=(1-x)ex-$\frac{1+x}{{e}^{x}}$,則g′(x)=-xe-x(e2x-1).
當(dāng)x∈(0,1)時,g′(x)<0,g(x)單調(diào)遞減,∴g(x)<g(0)=0.
即(1-x)ex-$\frac{1+x}{{e}^{x}}$<0.
∴?x∈(0,1),f(x)<f(-x).
而x2∈(0,1),∴f(x2)<f(-x2).
從而,f(x1)<f(-x2).
由于x1,-x2∈(-∞,0),f(x)在(-∞,0)上單調(diào)遞增,
∴x1<-x2,即x1+x2<0.
故選:B.

點評 本題考查導(dǎo)數(shù)知識的運用,考查數(shù)形結(jié)合的數(shù)學(xué)思想,正確構(gòu)造函數(shù)是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ2=$\frac{3}{1+2si{n}^{2}θ}$和點R(2$\sqrt{2}$,$\frac{π}{4}$)
(1)若極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與x軸的正半軸重合,且長度單位相同,將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)點P為曲線C上一動點,矩形PQRS以PR為其對角線,且矩形的一邊垂直于極軸,求矩形PQRS周長的最小值及此時點P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.平面向量$\overrightarrow a=(3,4),\overrightarrow b=(4,3),\overrightarrow c=λ\overrightarrow a-\overrightarrow b(λ∈R)$,且$\overrightarrow c$與$\vec a$的夾角等于$\overrightarrow c$與$\overrightarrow b$的夾角,則λ=(  )
A.1B.2C.-2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$sin({α+\frac{π}{3}})=-\frac{4}{5}$,$-\frac{π}{2}<α<0$,則cosα=$\frac{3-4\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)在R上恒小于0,且f'(x)的圖象如圖,則|f(x)|的極大值點的個數(shù)為( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC中,BC=1,B=$\frac{2π}{3}$,△ABC面積S=$\sqrt{3}$,則邊AC長為$\sqrt{21}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)y=f(x)(x∈R)的圖象如圖所示,則不等式xf′(x)≥0的解集為[0,$\frac{1}{2}$]∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知命題p:?x∈R,2x>0,那么命題¬p為( 。
A.?x∈R,2x<0B.?x∈R,2x<0C.?x∈R,2x≤0D.?x∈R,2x≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知$0<α<\frac{π}{2},0<β<\frac{π}{2},cosα=\frac{3}{5},cos({β+α})=\frac{5}{13}$.
(I)求sinβ的值;
(II)求$\frac{sin2α}{{{{cos}^2}α+cos2α}}$的值.

查看答案和解析>>

同步練習(xí)冊答案