設(shè)橢圓與雙曲線有共同的焦點
(-4,0)、(4,0),并且橢圓的長軸長是雙曲線實軸長的2倍,求橢圓與雙曲線的交點的軌跡.科目:高中數(shù)學(xué) 來源: 題型:
設(shè)橢圓與雙曲線有共同的焦點F(-4,0)、F(4,0),并且橢圓和長軸長是雙曲線實軸長的2倍,試求橢圓與雙曲線交點的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省許昌市三校高三上學(xué)期期末數(shù)學(xué)文卷 題型:解答題
.(本小題滿分12分)
已知橢圓與雙曲線有共同的焦點F1、F2,設(shè)它們在第一象限的交點為P,且
(1)求橢圓的方程;
(2)已知N(0,-1),對于(1)中的橢圓,是否存在斜率為的直線,與橢圓交于不同的兩點A、B,點Q滿足?若存在,求出的取值范圍;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
已知橢圓與雙曲線有共同的焦點F1、F2,設(shè)它們在第一象限的交點為P,且
(1)求橢圓的方程;
(2)已知N(0,-1),對于(1)中的橢圓,是否存在斜率為的直線,與橢圓交于不同的兩點A、B,點Q滿足?若存在,求出的取值范圍;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
已知橢圓與雙曲線有共同的焦點F1、F2,設(shè)它們在第一象限的交點為P,且
(1)求橢圓的方程;
(2)已知N(0,-1),對于(1)中的橢圓,是否存在斜率為的直線,與橢圓交于不同的兩點A、B,點Q滿足?若存在,求出的取值范圍;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com