(本小題12分)
如圖,在中,邊上的高,,沿翻折,使得得幾何體

(Ⅰ)求證:;
(Ⅱ)求點D到面ABC的距離。
(1)根據(jù)題意,由于平面.,那么結(jié)合性質(zhì)定理,以及余弦定理得到 ,進而得到證明。
(2)

試題分析:解:(Ⅰ)因為,所以平面.    2分
又因為平面所以
中,,由余弦定理,

因為,所以,即.②          5分
由①,②及,可得平面        .6分
(Ⅱ)過D點作DEBC,垂足為E點
由(Ⅰ)知平面 
∵AC面ABC
∴面ABC面BCD                                      8分
又∵面ABC面BCD=BC
∴DE面ABC
∴DE即為點D到面ABC的距離                           10分
∵在RtBCD中,BC·DE=BD·CD
∴2DE=1×
∴DE=
∴點D到面ABC的距離為                            12分
點評:解決的關(guān)鍵是根據(jù)已知的線面的垂直的判定定理和性質(zhì)定理得到證明,同時能利用做面的垂線得到距離,屬于基礎(chǔ)題。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐P-ABC中, AB="AC=4," D、E、F分別為PA、PC、BC的中點, BE="3," 平面PBC⊥平面ABC, BE⊥DF.

(Ⅰ)求證:BE⊥平面PAF;
(Ⅱ)求直線AB與平面PAF所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知一四棱錐P-ABCD的三視圖如下,E是側(cè)棱PC上的動點。

(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)當點E在何位置時,BD⊥AE?證明你的結(jié)論;
(Ⅲ)若點E為PC的中點,求二面角D-AE-B的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在三棱錐中,,,, 點,分別在棱上,且,

(Ⅰ)求證:平面PAC
(Ⅱ)當的中點時,求與平面所成的角的正弦值;
(Ⅲ)是否存在點使得二面角為直二面角?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(滿分12分)如右圖,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中點。

(Ⅰ)求證:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
如圖,在底面是直角梯形的四棱錐S-ABCD中, 


(1)求四棱錐S-ABCD的體積;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分為12分)
在四棱錐中,底面,,,,,的中點.

(I)證明:
(II)證明:平面;
(III)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)m、n是兩條不同的直線,是兩個不同的平面,則下列命題中正確的是
A.若m∥n,m,則n∥; B.若⊥β,m∥,則m⊥β;
C.若⊥β,m⊥β,則m∥D.若m⊥n,m⊥,n⊥β,則⊥β

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知球面上有四點P,A,B,C,滿足PA,PB,PC兩兩垂直,PA=3,PB=4,PC=5,則該球的表面積是(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案