已知等差數(shù)列{an}的前n項和為Sn,且滿足a2=4,a3+a4=17.
(1)求{an}的通項公式;
(2)設bn=2an+2,證明數(shù)列{bn}是等比數(shù)列并求其前n項和Tn
考點:等比關系的確定,等比數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)條件建立方程組,解首項和公差即可得到數(shù)列的通項公式.
(2)根據(jù)等比數(shù)列的定義進行證明,并能求出前n項和.
解答: 解:(1)由a2=4,a3+a4=17.
a1+d=4
2a1+5d=17
,解得
a1=1
d=3
,
∴an=3n-2.
(2)∵bn=2an+2=23n=8n,
bn
bn-1
=
8n
8n-1
=8
為常數(shù),
∴數(shù)列{bn}是等比數(shù)列,公比q=8,首項b1=8,
∴Tn=
8(1-8n)
1-8
=
8
7
(8n-1)
點評:本題主要考查等差數(shù)列和等比數(shù)列的通項公式的計算,根據(jù)條件建立方程組是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,
(1)若直線y=kx+1與函數(shù)f(x)的圖象相切,求實數(shù)k的值;
(2)若函數(shù)g(x)=f(eex),a<b,試證明:
g(a)+g(b)
2
g(b)-g(a)
b-a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}的前n項和為Sn,且a1=2,4Sn=anan+1,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列{
1
an2
}
與的前n項和為Tn,求證:
n
4n+4
Tn
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點(
3
,
1
2
),以橢圓C的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0),設圓T與橢圓C交于點M與點N.
(1)求橢圓C的方程;
(2)求
TM
TN
的最小值;
(3)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標原點,問丨OR丨•丨OS丨是否為定值?若是請求出定值,不是則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-2a2lnx(a>0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)記函數(shù)f(x)的最小值為M,求證:M≤1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角坐標系xOy中,有一組底邊長為an的等腰直角三角形AnBnCn(n=1,2,…),底邊BnCn依次放置在y軸上(相鄰頂點重合),點B1的坐標為(0,b).
(Ⅰ)若b=1,a1=2,a2=4,求點A1,A2的坐標;
(Ⅱ)若A1,A2,A3,…,An在同一直線上,求證:數(shù)列{an}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足
x+y-4≤0
x-y≥0
y≥0
,則z=x-2y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在45°的二面角α-l-β的棱上有兩點A、B,點C、D分別在平面 α、β內(nèi),且AC⊥AB,DB⊥AB,AC=BD=AB=1,則CD的長度為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin2α=
24
25
,0<α<
π
2
,則
2
cos(
π
4
-α)的值=
 

查看答案和解析>>

同步練習冊答案