已知函數(shù)f(x)=
x3(x>1)
-x2+2x(x≤1)
,若f(a)=-
5
4
,則a的值為
 
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)函數(shù)f(x)的解析式,討論a>1、a≤1時,f(a)=-
5
4
,求出對應a的值.
解答: 解:∵函數(shù)f(x)=
x3(x>1)
-x2+2x(x≤1)

且f(a)=-
5
4
,
∴當a>1時,f(a)=a3=-
5
4
,
解得a=-
310
2
,不滿足題意,舍去;
當a≤1時,f(a)=-a2+2a=-
5
4
,
解得a=-
1
2
或a=
5
2

a=
5
2
時不滿足題意,應舍去;
∴a的值為-
1
2

故答案為:-
1
2
點評:本題考查了分段函數(shù)的應用問題,解題時應對自變量的取值范圍進行討論,是基礎題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

“m=-2”是“直線(m+2)x+3my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的( 。
A、充分必要條件
B、充分而不必要條件
C、必要而不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于x的方程x2-(2+i)x-2ab+(a+b)i=0(a、b∈R)有實數(shù)解
(1)求a、b取值范圍
(2)求實根的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρsin(θ+
π
4
)+1=0,曲線C2的參數(shù)方程為
x=-1+cosφ
y=-1+sinφ
(φ為參數(shù),0≤φ≤π),則C1與C2
 
 個不同公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-cos2x+cosx+m,若1≤f(x)≤5恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐S-ABCD的底面是邊長為2a的菱形,且SA=SC=2a,SB=SD=
2
a,點E是SC上的點,且SE=λa(0<λ≤2).
(1)求證:對任意的λ∈(0,2],都有BD⊥AE;
(2)若SC⊥平面BED,求直線SA與平面BED所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB=2,點M是SD的中點,AN⊥SC,且交SC于點N.
(Ⅰ)求證:SB∥平面ACM;
(Ⅱ)求證:直線SC⊥平面AMN;
(Ⅲ)求直線CM與平面AMN所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a1,a2∈R+,則有不等式
(a1)2+(a2)2
2
≥(
a1+a2
2
2成立,請你類比推廣此性質(zhì).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC頂點A(1,4),角B,C平分線方程為l1:x+y-1=0和l2:x-2y=0,求邊BC所在的直線方程.

查看答案和解析>>

同步練習冊答案