設(shè)F1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn),P在橢圓上,當(dāng)△F1PF2面積為1時(shí),則的值是( )
A.0
B.1
C.2
D.I
【答案】分析:設(shè)的夾角為2θ,根據(jù)焦點(diǎn)三角形面積公式S=b2tanθ,可求2θ,再利用數(shù)量積公式即可;
解答:解:設(shè)的夾角為2θ
因?yàn)镾=b2tanθ=1,其中b=1所以tanθ=1,θ=45°
∴∠F1PF2=90°
所以=0
故選A
點(diǎn)評:本題以橢圓為載體,考查焦點(diǎn)三角形的面積,關(guān)鍵是利用橢圓的定義及面積公式S=b2tanθ.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2為橢圓的左右焦點(diǎn),過橢圓
x2
25
+
y2
16
=1
的中心任作一直線與橢圓交于PQ兩點(diǎn),當(dāng)四邊形PF1QF2面積最大時(shí),
PF1
PF2
的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知橢圓
x2
a2
+
y2
b2
=1
 (a>b>0)的離心率e=
6
3
,過點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為
3
2

(1)求橢圓的方程;
(2)設(shè)F1、F2為橢圓的左、右焦點(diǎn),過F2作直線交橢圓于P、Q兩點(diǎn),求△PQF1的內(nèi)切圓半徑r的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn),若橢圓上存在點(diǎn)P滿足∠F1PF2=120°,則橢圓的離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn),|F1F2|=8,P為橢圓上的一點(diǎn),|PF1|+|PF2|=10,PF1⊥PF2,則點(diǎn)P的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•薊縣一模)設(shè)F1、F2為橢圓的兩個(gè)焦點(diǎn),A為橢圓上的點(diǎn),且
AF2
F1F2
=0
,cos∠AF1F2=
2
2
3
,則橢圓的離心率為(  )

查看答案和解析>>

同步練習(xí)冊答案