已知函數(shù)

(1)判別函數(shù)的奇偶性,說明理由;

(2)解不等式

答案:
解析:

  解:(1)定義域(2分),(1分)(直接寫出得3分)

  (2分)

  所以是奇函數(shù)(1分)

  (2)(1分),,(1分) (2分)

  最后不等式的解集是(2分)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+2x
1-2x
+log2
1+x
1-x
  (1)判別函數(shù)的奇偶性,說明理由;(2)解不等式f(x)-
1+2x
1-2x
≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg(
3-x3+x
)
,其中 x∈(-3,3).
(1)判別函數(shù)f(x)的奇偶性;
(2)判斷并證明函數(shù)f(x)在(-3,3)上單調(diào)性;
(3)是否存在這樣的負(fù)實(shí)數(shù)k,使f(k-cosθ)+f(cos2θ-k2)≥0對(duì)一切θ∈R恒成立,若存在,試求出k取值的集合;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•奉賢區(qū)二模)(理)已知函數(shù)f(x)=
.
sinxcosx
-sinαcosα
.
,g(x)=
.
cosxsinx
sinβcosβ
.
,α,β是參數(shù),x∈R,α∈(-
π
2
,
π
2
)
,β∈(-
π
2
,
π
2
)

(1)若α=
π
4
,β=
π
4
,判別h(x)=f(x)+g(x)的奇偶性;
α=-
π
4
,β=
π
4
,判別h(x)=f2(x)+g2(x)的奇偶性;
(2)若α=
π
3
,t(x)=f(x)g(x)是偶函數(shù),求β;
(3)請(qǐng)你仿照問題(1)(2)提一個(gè)問題(3),使得所提問題或是(1)的推廣或是問題(2)的推廣,問題(1)或(2)是問題(3)的特例.(不必證明命題)
將根據(jù)寫出真命題所體現(xiàn)的思維層次和對(duì)問題探究的完整性,給予不同的評(píng)分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市奉賢區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

(理)已知函數(shù),α,β是參數(shù),x∈R,,
(1)若,判別h(x)=f(x)+g(x)的奇偶性;
,判別h(x)=f2(x)+g2(x)的奇偶性;
(2)若,t(x)=f(x)g(x)是偶函數(shù),求β;
(3)請(qǐng)你仿照問題(1)(2)提一個(gè)問題(3),使得所提問題或是(1)的推廣或是問題(2)的推廣,問題(1)或(2)是問題(3)的特例.(不必證明命題)
將根據(jù)寫出真命題所體現(xiàn)的思維層次和對(duì)問題探究的完整性,給予不同的評(píng)分.

查看答案和解析>>

同步練習(xí)冊(cè)答案