分析:(1)通過向量平行,判斷數(shù)列是等比數(shù)列,然后求數(shù)列{an}的通項(xiàng)公式;
(2)求出{an}的前n項(xiàng)的和為Sn,然后求出bn=anlog2(sn+2)的表達(dá)式,利用錯位相減法求數(shù)列{bn}的前n項(xiàng)的和Tn.
解答:解:(1)因?yàn)?span id="i41tyrp" class="MathJye">
=(1,2),
=(
an,
an+1),
∥,
所以a
n+1=2a
n,數(shù)列{a
n}是等比數(shù)列,公比為2,
又a
2+1是a
1與a
3的等差中項(xiàng),
2(a
2+1)=a
1+a
3,即2(2a
1+1)=5a
1,
解得a
1=2,
數(shù)列{a
n}的通項(xiàng)公式a
n=2•2
n-1=2
n;
(2)數(shù)列{a
n}的前n項(xiàng)的和為S
n=
=2
n+1-2,
數(shù)列{b
n}滿足b
n=a
nlog
2(s
n+2)=2
nlog
2(2
n+1-2+2)=2
n•(n+1),
T
n=2×2
1+3×2
2+4×2
3+…+(n+1)•2
n…①,
①×2得2T
n=2×2
2+3×2
3+4×2
4+…+(n+1)•2
n+1…②,
①-②得,-T
n=2×2
1+2
2+2
3+…+2
n-(n+1)•2
n+1=2-(n+1)•2
n+1+
=2-(n+1)•2
n+1+2
n+1-2
=-n•2
n+1,
數(shù)列{b
n}的前n項(xiàng)的和T
n=n•2
n+1.
點(diǎn)評:本題考查數(shù)列的判斷,通項(xiàng)公式的求法,錯位相減法求和的方法,考查計(jì)算能力.