【題目】如圖,DOAB是邊長(zhǎng)為2的正三角形,當(dāng)一條垂直于底邊OA(垂足不與O,A重合)的直線(xiàn)x=t從左至右移動(dòng)時(shí),直線(xiàn)l把三角形分成兩部分,記直線(xiàn)l左邊部分的面積y.
(Ⅰ)寫(xiě)出函數(shù)y= f(t)的解析式;
(Ⅱ)寫(xiě)出函數(shù)y= f(t)的定義域和值域.
【答案】(1) 見(jiàn)解析(2)見(jiàn)解析
【解析】
試題(1) 由題易知,當(dāng)t在B左側(cè)時(shí)(即0<t≤1)直線(xiàn)l左邊部分為三角形,面積可表示為
當(dāng)t在B右側(cè)時(shí)(即1<t<2)直線(xiàn)l左邊部分圖形不規(guī)則,可化為用三角形OAB面積減去剩下的三角形的面積即:
(2)由(1)聯(lián)系問(wèn)題的具體情況易求出定義域及值域。
試題解析: (1) 當(dāng)0<t≤1時(shí),y=
當(dāng)1<t<2時(shí),y=
所以,
(2)由題知,y=f(x)的定義域?yàn)椋?/span>0,2), 由問(wèn)題的實(shí)際意義知,y=f(x)的值域?yàn)椋?/span>0,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的單位長(zhǎng)度,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=2 sinθ.
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線(xiàn)l交于A,B兩點(diǎn),若點(diǎn)P坐標(biāo)為(3, ),求|PA|+|PB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中是真命題的是( )
①“若x2+y2≠0,則x,y不全為零”的否命題 ②“正多邊形都相似”的逆命題
③“若m>0,則x2+x-m=0有實(shí)根”的逆否命題④“若x-是有理數(shù),則x是
無(wú)理數(shù)”的逆否命題
A、①②③④ B、①③④ C、②③④ D、①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中國(guó)詩(shī)詞大會(huì)》節(jié)目組決定把《將進(jìn)酒》、《山居秋暝》、《望岳》、《送杜少府之任蜀州》和另外確定的兩首詩(shī)詞排在后六場(chǎng),并要求《將進(jìn)酒》與《望岳》相鄰,且《將進(jìn)酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰,且均不排在最后,則后六場(chǎng)開(kāi)場(chǎng)詩(shī)詞的排法有_____________種.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中國(guó)詩(shī)詞大會(huì)》(第二季)亮點(diǎn)頗多,十場(chǎng)比賽每場(chǎng)都有一首特別設(shè)計(jì)的開(kāi)場(chǎng)詩(shī)詞在聲光舞美的配合下,百人團(tuán)齊聲朗誦,別有韻味.若《將進(jìn)酒》《山居秋暝》《望岳《送杜少府之任蜀州》和另確定的兩首詩(shī)詞排在后六場(chǎng),且《將進(jìn)酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場(chǎng)的排法有( )
A. 288種 B. 144種 C. 720種 D. 360種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù)F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范圍;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在區(qū)間[0,6]上的最大值M(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),橢圓C:的左、右焦點(diǎn)分別為F1,F2,右頂點(diǎn)為A,上頂點(diǎn)為B,若|OB|,|OF2|,|AB|成等比數(shù)列,橢圓C上的點(diǎn)到焦點(diǎn)F2的最短距離為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)T為直線(xiàn)x=-3上任意一點(diǎn),過(guò)F1的直線(xiàn)交橢圓C于點(diǎn)P,Q,且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來(lái),睡了一覺(jué),當(dāng)它醒來(lái)時(shí),發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時(shí)已晚,烏龜還是先到達(dá)了終點(diǎn).用,分別表示烏龜和兔子所行的路程,為時(shí)間,則與故事情節(jié)相吻合的是( 。
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中,若僅存在兩個(gè)的整數(shù)使得,則實(shí)數(shù)的取值范圍是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com