設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義.對于給定的正數(shù)K,定義函數(shù)取函數(shù)f(x)=3-x-e-x.若對任意的x∈(-∞,+∞),恒有fK(x)=f(x),則( )
A.K的最大值為2
B.K的最小值為2
C.K的最大值為1
D.K的最小值為1
【答案】分析:由函數(shù)的解析式可以看出,此分段函數(shù)的解析式是取兩個函數(shù)中函數(shù)值較小的那一個,若對任意的x∈(-∞,+∞),恒有fK(x)=f(x),說明f(x)=3-x-e-x有最大值,求出其最大值,即得K的最小值
解答:解:由題意取函數(shù)f(x)=3-x-e-x.若對任意的x∈(-∞,+∞),恒有fK(x)=f(x),故K≥f(x)max
∵f′(x)=-1+e-x,令f′(x)>0得x<0,令f′(x)<0得x>0,
∴函數(shù)f(x)=3-x-e-x在x=0處取到最大值,為f(0)=3-0-e-0=2
故K的最小值為2
故選B
點評:本題考查新定義及指數(shù)型函數(shù)的最值的求法,求解本題的關(guān)鍵是理解新定義的內(nèi)容,以及用導(dǎo)數(shù)判斷出函數(shù)的單調(diào)性確定函數(shù)的最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義.對于給定的正數(shù)K,定義函數(shù) fk(x)=
f(x),f(x)≤K
K,f(x)>K
,取函數(shù)f(x)=2-x-e-x.若對任意的x∈(+∞,-∞),恒有fk(x)=f(x),則( 。
A、K的最大值為2
B、K的最小值為2
C、K的最大值為1
D、K的最小值為1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義,對于給定的正數(shù)K,定義函數(shù):fK(x)=
f(x)
1
f(x)
f(x)≤K
 
f(x)>K
,取函數(shù)f(x)=(
1
2
)|x|
,當(dāng)K=
1
2
時,函數(shù)fK(x)的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在(a,b)上的導(dǎo)數(shù)為f′(x),f′(x)在(a,b)上的導(dǎo)數(shù)為f″(x),若在(a,b)上,f″(x)<0恒成立,則稱函數(shù)f(x)在(a,b)上為“凸函數(shù)”.若函數(shù)f(x)=
1
12
x4-
1
6
mx3-
3
2
x2
為區(qū)間(-1,3)上的“凸函數(shù)”,則m=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在(-∞,+∞)上滿足f(-x)=f(4+x),f(4-x)=f(10+x),且在閉區(qū)間[0,7]上,f(x)=0僅有兩個根x=1和x=3,則方程f(x)=0在閉區(qū)間[-2011,2011]上根的個數(shù)有
805
805

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義.對于給定的正數(shù)K,定義函數(shù)fk(x)=
f(x),f(x)≥K
K,f(x)<K
,取函數(shù)f(x)=2+x+e-x.若對任意的x∈(+∞,-∞),恒有fk(x)=f(x),則(  )

查看答案和解析>>

同步練習(xí)冊答案