已知函數(shù).
(1)若,求曲線
在點
處的切線方程;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實數(shù)
的取值范圍;
(3)設(shè)函數(shù),若在
上至少存在一點
,使得
>
成立,求實數(shù)
的取值范圍.
(1);(2)實數(shù)
的取值范圍是
;(3)實數(shù)
的取值范圍
.
解析試題分析:(1)求的導(dǎo)數(shù),找出
處的導(dǎo)數(shù)即切線的斜率,由點斜式列出直線的方程即可;(2)求出函數(shù)的定義域,在定義域內(nèi)利用導(dǎo)數(shù)與函數(shù)增減性的關(guān)系,轉(zhuǎn)化為恒成立問題進行求解即可;(3)討論
在定義域上的最值,分情況討論
的增減性,進而解決
存在成立的問題即可.
(1)當(dāng)時,函數(shù)
,
,曲線
在點
處的切線的斜率為
從而曲線在點
處的切線方程為
,即
3分
(2)
令,要使
在定義域
內(nèi)是增函數(shù),只需
在
內(nèi)恒成立
由題意,
的圖象為開口向上的拋物線,對稱軸方程為
∴, 只需
,即
時,
∴在
內(nèi)為增函數(shù),正實數(shù)
的取值范圍是
7分
(3)∵在
上是減函數(shù)
∴時,
;
時,
,即
①當(dāng)時,
,其圖象為開口向下的拋物線,對稱軸
在
軸的左側(cè),且
,所以
在
內(nèi)是減函數(shù)
當(dāng)時,
,因為
,所以
,
此時,在
內(nèi)是減函數(shù)
故當(dāng)時,
在
上單調(diào)遞減
,不合題意
②當(dāng)時,由
,所以
又由(Ⅱ)知當(dāng)時,
在
上是增函數(shù)
∴,不合題意 12分
③當(dāng)時,由(Ⅱ)知
在
上是增函數(shù),
又在
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
,
為自然對數(shù)的底數(shù).
(I)求函數(shù)的極值;
(2)若方程有兩個不同的實數(shù)根,試求實數(shù)
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),其中
是
的導(dǎo)函數(shù).
,
(1)求的表達式;
(2)若恒成立,求實數(shù)
的取值范圍;
(3)設(shè),比較
與
的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè),函數(shù)
.
(1)若x=2是函數(shù)的極值點,求
的值;
(2)設(shè)函數(shù),若
≤0對一切
都成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線
在點
處的切線與x軸平行.
(1)求k的值,并求的單調(diào)區(qū)間;
(2)設(shè),其中
為
的導(dǎo)函數(shù).證明:對任意
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
記函數(shù)fn(x)=a·xn-1(a∈R,n∈N*)的導(dǎo)函數(shù)為f′n(x),已知f′3(2)=12.
(1)求a的值;
(2)設(shè)函數(shù)gn(x)=fn(x)-n2ln x,試問:是否存在正整數(shù)n使得函數(shù)gn(x)有且只有一個零點?若存在,請求出所有n的值;若不存在,請說明理由;
(3)若實數(shù)x0和m(m>0且m≠1)滿足=
,試比較x0與m的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3-4x2+5x-4.
(1)求曲線f(x)在點(2,f(2))處的切線方程;
(2)求經(jīng)過點A(2,-2)的曲線f(x)的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(
R),
為其導(dǎo)函數(shù),且
時
有極小值
.
(1)求的單調(diào)遞減區(qū)間;
(2)若,
,當(dāng)
時,對于任意x,
和
的值至少有一個是正數(shù),求實數(shù)m的取值范圍;
(3)若不等式(
為正整數(shù))對任意正實數(shù)
恒成立,求
的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com