(2008浙江高考,文11)已知函數(shù)f(x)=x2+|x-2|,則f(1)=________.
2
f(1)=12+|1-2|=1+1=2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

有一位商人,從北京向上海的家中打電話,通話m分鐘的電話費(fèi),由函數(shù)f(m)=1.06×(0.5[m]+1)(元)決定,其中m>0,[m]是大于或等于m的最小整數(shù).則從北京到上海通話時(shí)間為5.5分鐘的電話費(fèi)為(  )
A.3.71元B.3.97元
C.4.24元D.4.77元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知。
(1)求f(2),g(2)的值;
(2)求f[的值;
(3)求f[和g[的解析式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù).若存在實(shí)數(shù),,使得,則的取值范圍是(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對(duì)于定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231004961366.png" style="vertical-align:middle;" />的函數(shù),如果同時(shí)滿足以下三條:①對(duì)任意的,總有;②;③若,都有成立,則稱函數(shù)為理想函數(shù).
(1) 若函數(shù)為理想函數(shù),求的值;
(2)判斷函數(shù)是否為理想函數(shù),并予以證明;
(3) 若函數(shù)為理想函數(shù),假定,使得,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

自然狀態(tài)下的魚類是一種可再生資源,為持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強(qiáng)度對(duì)魚群總量的影響. 用xn表示某魚群在第n年年初的總量,n∈N*,且x1>0.不考慮其它因素,設(shè)在第n年內(nèi)魚群的繁殖量及捕撈量都與xn成正比,死亡量與xn2成正比,這些比例系數(shù)依次為正常數(shù)a,b,c.
(Ⅰ)求xn+1與xn的關(guān)系式;
(Ⅱ)猜測(cè):當(dāng)且僅當(dāng)x1,a,b,c滿足什么條件時(shí),每年年初魚群的總量保持不變?(不要求證明)
(Ⅲ)設(shè)a=2,b>0,c=1為保證對(duì)任意x1∈(0,2),都有xn>0,n∈N*,則捕撈強(qiáng)度b的最大允許值是多少?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤(rùn)與投資單位是萬元)

(1)分別將A、B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式;
(2)該企業(yè)已籌集到10萬元資金,并全部投入A、B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

.”以上推理的大前提是_____________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知在R上是奇函數(shù),且.(  )
A.-2B.2C.-98D.98

查看答案和解析>>

同步練習(xí)冊(cè)答案