18.已知f(x)=$\left\{{\begin{array}{l}{{x^2}-1,(x>0)}\\{f(x+1)-1,(x≤0)}\end{array}}$,則f(-1)=( 。
A.-2B.-1C.0D.1

分析 由已知中f(x)=$\left\{{\begin{array}{l}{{x^2}-1,(x>0)}\\{f(x+1)-1,(x≤0)}\end{array}}$,將x=-1代入可得答案.

解答 解:∵f(x)=$\left\{{\begin{array}{l}{{x^2}-1,(x>0)}\\{f(x+1)-1,(x≤0)}\end{array}}$,
∴f(-1)=f(0)-1=f(1)-2=-2,
故選:A

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,函數(shù)求值,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知(a+3b)n展開式中,各項(xiàng)系數(shù)的和與各項(xiàng)二項(xiàng)式系數(shù)的和之比為64,則n=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)a=log${\;}_{\frac{1}{3}}}$2,b=20.6,c=log43,則a,b,c的大小關(guān)系為( 。
A.a>b>cB.c>b>aC.b>c>aD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個(gè)底面為正方形的棱錐的三視圖如圖所示,則它的外接球的表面積為( 。
A.$\frac{13π}{4}$B.$\frac{{\sqrt{13}π}}{2}$C.13πD.$\sqrt{13}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.公園里有一扇形湖面,管理部門打算在湖中建一三角形觀景平臺(tái),希望面積與周長(zhǎng)都最大.如圖所示扇形AOB,圓心角AOB的大小等于$\frac{π}{3}$,半徑為2百米,在半徑OA上取一點(diǎn)C,過點(diǎn)C作平行于OB的直線交弧AB于點(diǎn)P.設(shè)∠COP=θ;
(1)求△POC面積S(θ)的函數(shù)表達(dá)式.
(2)求S(θ)的最大值及此時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={3,log2(a2+3a)},B={a,b,1},若A∩B={2},則集合A∪B=( 。
A.{1,2,3,4}B.{-4,1,2,3}C.{1,2,3}D.{-1,4,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=alnx-ax(a≠0).
(I)討論f(x)的單調(diào)性;
(Ⅱ)若f(x)+(a+1)x+1-e≤0對(duì)任意x∈[e,e2]恒成立,求實(shí)數(shù)a的取值范圍(e為自然常數(shù));
(Ⅲ)求證lnn!≤$\frac{(n+2)(n-1)}{2}$(n≥2,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)若函數(shù)f(x)=$\frac{ax+1}{x+b}$的圖象的對(duì)稱中心為(2,1),求實(shí)數(shù)a、b.
(2)已知函數(shù)y=f(x)的定義域?yàn)镽,且當(dāng)x∈R時(shí),f(m+x)=-f(m-x)+2n恒成立,求證y=f(x)的圖象關(guān)于點(diǎn)(m,n)對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)集合M={x|x2-2x>0},集合N={0,1,2,3,4},則(∁RM)∩N等于( 。
A.{4}B.{3,4}C.{0,1,2}D.{0,1,2,3,4}

查看答案和解析>>

同步練習(xí)冊(cè)答案