(04年上海卷理)(14分)
已知二次函數(shù)y=f1(x)的圖象以原點(diǎn)為頂點(diǎn)且過(guò)點(diǎn)(1,1),反比例函數(shù)y=f2(x)的圖象與直線y=x的兩個(gè)交點(diǎn)間距離為8,f(x)= f1(x)+ f2(x).
(1) 求函數(shù)f(x)的表達(dá)式;
(2) 證明:當(dāng)a>3時(shí),關(guān)于x的方程f(x)= f(a)有三個(gè)實(shí)數(shù)解.
解析:(1)由已知,設(shè)f1(x)=ax2,由f1(1)=1,得a=1, ∴f1(x)= x2.
設(shè)f2(x)=(k>0),它的圖象與直線y=x的交點(diǎn)分別為
A(,)B(-,-)
由=8,得k=8,. ∴f2(x)=.故f(x)=x2+.
(2) 【證法一】f(x)=f(a),得x2+=a2+,
即=-x2+a2+.
在同一坐標(biāo)系內(nèi)作出f2(x)=和
f3(x)= -x2+a2+
的大致圖象,其中f2(x)的圖象是以坐標(biāo)軸為漸近線,且位于第一、三象限的雙曲線, f3(x)與的圖象是以(0, a2+)為頂點(diǎn),開口向下的拋物線.
因此, f2(x)與f3(x)的圖象在第三象限有一個(gè)交點(diǎn),
即f(x)=f(a)有一個(gè)負(fù)數(shù)解.
又∵f2(2)=4, f3(2)= -4+a2+
當(dāng)a>3時(shí),. f3(2)-f2(2)= a2+-8>0,
∴當(dāng)a>3時(shí),在第一象限f3(x)的圖象上存在一點(diǎn)(2,f(2))在f2(x)圖象的上方.
∴f2(x)與f3(x)的圖象在第一象限有兩個(gè)交點(diǎn),即f(x)=f(a)有兩個(gè)正數(shù)解.
因此,方程f(x)=f(a)有三個(gè)實(shí)數(shù)解.
【證法二】由f(x)=f(a),得x2+=a2+,
即(x-a)(x+a-)=0,得方程的一個(gè)解x1=a.
方程x+a-=0化為ax2+a2x-8=0,
由a>3,△=a4+32a>0,得
x2=, x3=,
∵x2<0, x3>0, ∴x1≠ x2,且x2≠ x3.
若x1= x3,即a=,則3a2=, a4=4a,
得a=0或a=,這與a>3矛盾, ∴x1≠ x3.
故原方程f(x)=f(a)有三個(gè)實(shí)數(shù)解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(04年上海卷理)(18分)
設(shè)P1(x1,y1), P1(x2,y2),…, Pn(xn,yn)(n≥3,n∈N) 是二次曲線C上的點(diǎn), 且a1=2, a2=2, …, an=2構(gòu)成了一個(gè)公差為d(d≠0) 的等差數(shù)列, 其中O是坐標(biāo)原點(diǎn). 記Sn=a1+a2+…+an.
(1) 若C的方程為=1,n=3. 點(diǎn)P1(3,0) 及S3=255, 求點(diǎn)P3的坐標(biāo);
(只需寫出一個(gè))
(2)若C的方程為(a>b>0). 點(diǎn)P1(a,0), 對(duì)于給定的自然數(shù)n, 當(dāng)公差d變化時(shí), 求Sn的最小值;
. (3)請(qǐng)選定一條除橢圓外的二次曲線C及C上的一點(diǎn)P1,對(duì)于給定的自然數(shù)n,寫出符合條件的點(diǎn)P1, P2,…Pn存在的充要條件,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(04年上海卷理)圓心在直線2x-y-7=0上的圓C與y軸交于兩點(diǎn)A(0, -4),B(0, -2),則圓C的方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(04年上海卷理)在極坐標(biāo)系中,點(diǎn)M(4,)到直線l:ρ(2cosθ+sinθ)=4的距離d= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(04年上海卷理)若函數(shù)y=f(x)的圖象可由函數(shù)y=lg(x+1)的圖象繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到,則 f(x)=( )
(A) 10-x-1. (B) 10x-1. (C) 1-10-x. (D) 1-10x.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com