A. | $\frac{2}{3}$ | B. | $\frac{11}{27}$ | C. | $\frac{1}{3}$ | D. | $\frac{5}{27}$ |
分析 根據(jù)條件求出函數(shù)有零點(diǎn)的取值范圍,利用幾何概型的概率公式,求出相應(yīng)的面積即可得到結(jié)論.
解答 解:若函數(shù)f(x)在R上有零點(diǎn),
則滿足判別式△=4b-4a2≥0,即b>a2
區(qū)域$\left\{\begin{array}{l}x+y-6≤0\\ x>0\\ y>0\end{array}$的面積S=$\frac{1}{2}×6×6$=18,
由$\left\{\begin{array}{l}{y={x}^{2}}\\{x+y-6=0}\end{array}\right.$,解得x=2,y=4,即(2,4),
則函數(shù)f(x)在R上有零點(diǎn),區(qū)域的面積S=${∫}_{0}^{2}(6-x-{x}^{2})dx$=$(6x-\frac{1}{2}{x}^{2}-\frac{1}{3}{x}^{3}){|}_{0}^{2}$=$\frac{22}{3}$,
∴根據(jù)幾何概型的概率公式可知函數(shù)f(x)在R上有零點(diǎn)的概率為$\frac{11}{27}$,
故選:B.
點(diǎn)評 本題主要考查幾何概型的概率計(jì)算,以及利用積分求區(qū)域面積,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 88% | B. | 42% | C. | 40% | D. | 16% |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | 2 | C. | $3+2\sqrt{2}$ | D. | $4+2\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com