3.已知拋物線C:y2=2px的焦點(diǎn)與圓x2+y2-2x-15=0的圓心重合,則拋物線C的方程是( 。
A.y2=2xB.y2=-2xC.y2=4xD.y2=-4x

分析 求出圓的圓心坐標(biāo),然后求解拋物線方程.

解答 解:圓x2+y2-2x-15=0的圓心(1,0),拋物線C:y2=2px的焦點(diǎn)與圓x2+y2-2x-15=0的圓心重合,
可得:p=2,所求拋物線方程為:y2=4x.
故選:C.

點(diǎn)評 本題考查圓的方程的應(yīng)用以及拋物線方程的求法,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.我國古代有著輝煌的數(shù)學(xué)研究成果.《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、…、《輯古算經(jīng)》等算經(jīng)10部專著,有著十分豐富多彩的內(nèi)容,是了解我國古代數(shù)學(xué)的重要文獻(xiàn).這10部專著中有7部產(chǎn)生于魏晉南北朝時(shí)期.某中學(xué)擬從這10部名著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部名著中至少有一部是魏晉南北朝時(shí)期的名著的概率為( 。
A.$\frac{14}{15}$B.$\frac{13}{15}$C.$\frac{2}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在如圖所示一組數(shù)據(jù)的莖葉圖中,有一個(gè)數(shù)字被污染后而模糊不清,但曾計(jì)算得該組數(shù)據(jù)的極差與中位數(shù)之和為61,則被污染的數(shù)字為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABO中,點(diǎn)C是點(diǎn)B關(guān)于點(diǎn)A的對稱點(diǎn),點(diǎn)D是OB靠近B的三等分點(diǎn),DC與OA交于E點(diǎn),設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{OC}$,$\overrightarrow{CD}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四棱錐P-ABCD中,底面ABCD為直角梯形,∠BAD=∠ADC=90°,AP=AD=2CD=1,AB=2,PA⊥平面ABCD.
(1)求證:平面PBD⊥平面PAC;
(2)若側(cè)棱PB上存在點(diǎn)Q,使得VP-ACD:VQ-ABC=1:2,求二面角Q-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖1為正方形ABCD的邊長為2,AC∩BD=O,將正方形ABCD沿對角線BD折起,使AC=a,得到三棱錐A-BCD(如圖2)
(1)點(diǎn)E在棱AB上,且AE=3EB,點(diǎn)F在棱AC上,且AF=2FC,求證:DF∥平面CED
(2)當(dāng)a為何值時(shí),三棱錐A-BCD的體積最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)Sn為各項(xiàng)不相等的等差數(shù)列an的前n 項(xiàng)和,已知a3a8=3a11,S3=9.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$,數(shù)列{bn}的前n 項(xiàng)和為Tn,求$\frac{{a}_{n+1}}{{T}_{n}}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知過原點(diǎn)的直線l與圓C:x2+y2-6x+5=0相交于不同的兩點(diǎn)A、B,且線段AB中點(diǎn)坐標(biāo)為(2,$\sqrt{2}$),則弦長為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.甲、乙兩企業(yè)根據(jù)賽事組委會要求為獲獎(jiǎng)?wù)叨ㄗ瞿彻に嚻纷鳛楠?jiǎng)品,其中一等獎(jiǎng)獎(jiǎng)品3件,二等獎(jiǎng)獎(jiǎng)品6件;制作一等獎(jiǎng)、二等獎(jiǎng)所用原料完全相同,但工藝不同,故價(jià)格有所差異.甲廠收費(fèi)便宜,但原料有限,最多只能制作4件獎(jiǎng)品,乙廠原料充足,但收費(fèi)較貴,其具體收費(fèi)如表所示,則組委會定做該工藝品的費(fèi)用總和最低為4900元.
獎(jiǎng)品
繳費(fèi)(無/件)
工廠
一等獎(jiǎng)獎(jiǎng)品二等獎(jiǎng)獎(jiǎng)品
500400
800600

查看答案和解析>>

同步練習(xí)冊答案