【題目】已知函數(shù)f(x)= ,若函數(shù)g(x)=f2(x)﹣axf(x)恰有6個零點,則a的取值范圍是( )
A.(0,3)
B.(1,3)
C.(2,3)
D.(0,2)
【答案】C
【解析】解:令g(x)=f2(x)﹣axf(x)=0,
則f(x)=0,或f(x)﹣ax=0,
①當(dāng)f(x)=0時,即3x+1=0或x2﹣4x+1=0,
解得x=﹣ ,x=2﹣ ,x=2+ ,即有三個零點,
②當(dāng)f(x)﹣ax=0,即f(x)=ax,
∵x=0時,f(0)=1≠0,即x≠0,
∴方程 =a有三個根,
當(dāng)x<0時, =3+ ,
當(dāng)x>0時, =|x+ ﹣4|,
分別畫出y= (紫線)與y=a的圖象,如右圖所示,
由圖可知,當(dāng)a∈(2,3)時,兩函數(shù)圖象有三個交點,
綜合以上討論得,當(dāng)a∈(2,3)時,原函數(shù)g(x)有六個零點.
所以答案是:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2.
(1)求{an}的通項公式.
(2)設(shè)等比數(shù)列{bn}滿足b2=a3,b3=a7.問:b6與數(shù)列{an}的第幾項相等?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)甲,乙兩種芯片,其質(zhì)量按測試指標(biāo)劃分為:指標(biāo)大于或等于82為合格品,小于82為次品.現(xiàn)隨機抽取這兩種芯片各100件進行檢測,檢測結(jié)果統(tǒng)計如下:
測試指標(biāo) | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
芯片甲 | 8 | 12 | 40 | 32 | 8 |
芯片乙 | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計芯片甲,芯片乙為合格品的概率;
(2)生產(chǎn)一件芯片甲,若是合格品可盈利40元,若是次品則虧損5元;生產(chǎn)一件芯片乙,若是合格品可盈利50元,若是次品則虧損10元.在(1)的前提下,記X為生產(chǎn)1件芯片甲和1件芯片乙所得的總利潤,求隨機變量X的分布列及生產(chǎn)1件芯片甲和1件芯片乙所得總利潤的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (α為參數(shù)),在以原點為極點,x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為 .
(1)求C的普通方程和l的傾斜角;
(2)設(shè)點P(0,2),l和C交于A,B兩點,求|PA|+|PB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形中, , , , , 和分別為與的中點,對于常數(shù),在梯形的四條邊上恰好有8個不同的點,使得成立,則實數(shù)的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)得到方程2x+e﹣0.3x﹣100=0(其中e=2.7182…)的大于零的近似解依次為①50;②50.1;③49.5;④50.001,你認(rèn)為的答案為最佳近似解(請?zhí)罴、乙、丙、丁中的一個)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣a(x+1)(a≠0).
(1)討論f(x)的單調(diào)性;
(2)若f(x)>a2﹣a,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與軸的正半軸重合,圓的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)若, 是直線與軸的交點, 是圓上一動點,求的最大值;
(Ⅱ)若直線被圓截得的弦長等于圓的半徑倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知.f(x)=sinxcosx-cos2x+
(1)求f(x)的最小正周期,并求其圖象對稱中心的坐標(biāo);
(2)當(dāng)0≤x≤時,求函數(shù)f(x)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com