一個袋中裝有大小相同的5個球,現(xiàn)將這5個球分別編號為1,2,3,4,5,從袋中取出兩個球,每次只取出一個球,并且取出的球不放回.求取出的兩個球上編號之積為奇數(shù)的
概率為(  )
A.B.C.D.
B
先后取兩個球所得積的所有結(jié)果方有:2,3,4,5,6,8,10,12,15,20共10種;其中是奇數(shù)的有3,5,15共3種。所以所求的概率為。故選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

袋中裝有6個不同的紅球和4個不同的白球,不放回地依次摸出2個球,在第1次摸出紅球的條件下,第2次摸出的也是紅球的概率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

袋子里共有大小相同的2只白球和2只黑球,若從中隨機(jī)摸出兩只球,他們都是白球的概率為              

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從一批產(chǎn)品中取出兩件產(chǎn)品,事件 “至少有一件是次品”的對立事件是
A.至多有一件是次品B.兩件都是次品
C.只有一件是次品D.兩件都不是次品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

同時擲3枚硬幣,那么下面兩個事件中是對立事件的是 (     )
A.至少有1枚正面和最多有1枚正面
B.最多1枚正面和恰好2枚正面
C.不多于1枚正面和至少有2枚正面
D.至少有2枚正面和恰好有1枚正面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知函數(shù)軸圍成的區(qū)域記為M(圖中陰影部分),若隨機(jī)向圓O:x2+y2=2內(nèi)投入一米粒,則該米粒落在區(qū)域M內(nèi)的概率是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某校高一年級共有320人,為調(diào)查高一年級學(xué)生每天晚自習(xí)自主支配學(xué)習(xí)時間(指除了完成老師布置的作業(yè)后學(xué)生根據(jù)自己的需要進(jìn)行學(xué)習(xí)的時間)情況,學(xué)校采用隨機(jī)抽樣的方法從高一學(xué)生中抽取了n名學(xué)生進(jìn)行問卷調(diào)查.根據(jù)問卷得到了這n名學(xué)生每天晚自習(xí)自主支配學(xué)習(xí)時間的數(shù)據(jù)(單位:分鐘),按照以下區(qū)間分為七組:①[0,10),②[10,20),③[20,30),④[30,40),⑤[40,50),⑥[50,60),⑦[60,70),得到頻率分布直方圖如圖.已知抽取的學(xué)生中每天晚自習(xí)自主支配學(xué)習(xí)時間低于20分鐘的人數(shù)是4人.
(1)求n的值;
(2)若高一全體學(xué)生平均每天晚自習(xí)自主支配學(xué)習(xí)時間少于45分鐘,則學(xué)校需要減少作業(yè)量.根據(jù)以上抽樣調(diào)查數(shù)據(jù),學(xué)校是否需要減少作業(yè)量?
(注:統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表)
(3)問卷調(diào)查完成后,學(xué)校從第3組和第4組學(xué)生中利用分層抽樣的方法抽取7名學(xué)生進(jìn)行座談,了解各學(xué)科的作業(yè)布置情況,并從這7人中隨機(jī)抽取兩名學(xué)生聘為學(xué)情調(diào)查聯(lián)系人。求第3組中至少有1名學(xué)生被聘為學(xué)情調(diào)查聯(lián)系人的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
在某次考試中共有12道選擇題,每道選擇題有4個選項,其中只有一個是正確的,評分標(biāo)準(zhǔn)規(guī)定:“每題只選一項,答對得5分,不答或答錯得0分”。某考生每道題給出一個答案,并已確定有9道題的答案是正確的,而其余題中,有一道題可判斷出兩個選項是錯誤的,有一道題可以判斷出一個選項是錯誤的,還有一道題因不了解題意只能亂猜,試求出該考生;
(1)選擇題得60分的概率;
(2)選擇題所得分?jǐn)?shù)的數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某種飲料每箱裝6聽,其中有4聽合格,2聽不合格,現(xiàn)質(zhì)檢人員從中隨機(jī)抽取2聽進(jìn)行檢驗,則檢測出至少有1聽不合格的概率為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案