已知函數(shù)f(x)=2x-x,且實數(shù)a>b>c>0滿足f(a)•f(b)•f(c)<0,若實數(shù)x是函數(shù)y=f(x)的一個零點,那么下列不等式中不可能成立的是( )
A.x<a
B.x>a
C.x<b
D.x<c
【答案】分析:確定函數(shù)為減函數(shù),進而可得f(a)、f(b)、f(c)中一項為負(fù)的、兩項為正的;或者三項都是負(fù)的,分類討論分別求得可能成立選項,從而得到答案
解答:解:∵f(x)=2x-x在(0,+∞)上是增函數(shù),0<c<b<a,
∴f(c)<f(b)<f(a)
∵f(a)f(b)f(c)<0,
∴f(a)、f(b)、f(c)中一項為負(fù)的、兩項為正的;或者三項都是負(fù)的
即f(c)<0,0<f(b)<f(a)或f(c)<f(b)<f(a)<0.
由于實數(shù)x是函數(shù)y=f(x)的一個零點,
當(dāng)f(c)<0,0<f(b)<f(a)時,c<x<b<a,此時A,C成立.
當(dāng)f(c)<f(b)<f(a)<0時,x>a,此時B成立.
綜上可得,D不可能成立
故選D.
點評:本題主要考查函數(shù)的零點的定義,判斷函數(shù)的零點所在的區(qū)間的方法,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實數(shù)a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數(shù)的圖象與x軸有兩個不同的交點;
(2)如果函數(shù)的一個零點在原點,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案