(本小題滿分14分)
已知:橢圓的左右焦點為;直線經(jīng)過交橢圓于兩點.
(1)求證:的周長為定值.
(2)求的面積的最大值?
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知 F1、F2是橢圓的兩焦點,是橢圓在第一象限弧上一點,且滿足=1.過點P作傾斜角互補的兩條直線PA、PB分別交橢圓于A、B兩點.
(1)求P點坐標;
(2)求證直線AB的斜率為定值;
(3)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知點是橢圓上一點,是橢圓的兩焦點,且滿足
(Ⅰ) 求橢圓的兩焦點坐標;
(Ⅱ) 設點是橢圓上任意一點,如果最大時,求證、兩點關于原點不對稱.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求過點,且與橢圓有相同焦點的橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓以坐標原點為中心,坐標軸為對稱軸,且該橢圓以拋物線的焦點為其一個焦點,以雙曲線的焦點為頂點。
(1)求橢圓的標準方程;
(2)已知點,且分別為橢圓的上頂點和右頂點,點是線段上的動點,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓短軸是2,長軸是短軸的2倍,則橢圓中心到其準線的距離為
A        B       C       D

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設橢圓上的動點Q,過動點Q作橢圓的切線l,過右焦點作l的垂線,垂足為P,則點P的軌跡方程為( 。
A.x2+y2=a2B.x2+y2=b2
C.x2+y2=c2D.x2+y2=e2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分16分) 如圖,設橢圓的右頂點與上頂點分別
為A、B,以A為圓心,OA為半徑的圓與以B為圓心,OB為半徑的圓相交于點O、P.

(1)求點P的坐標;
(2) 若點P在直線上,求橢圓的離心率;
(3) 在(2)的條件下,設M是橢圓上的一動點,且點N(0,1)到橢圓上點的最近距離為3,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知焦點在軸上的橢圓的離心率為,它的長軸長等于圓的半徑,則橢圓的標準方程是                

查看答案和解析>>

同步練習冊答案