e |
e |
e |
2e |
x |
2(x-
| ||||
x |
e |
e |
e |
e |
e |
e |
e |
e |
e |
e |
e |
e |
e |
c |
e |
e |
e |
e |
e |
c |
2c |
x |
c |
c |
e |
e |
e |
e |
e |
e |
e |
科目:高中數(shù)學(xué) 來源: 題型:
a |
3 |
b |
1 |
2 |
| ||
2 |
c |
a |
b |
d |
a |
b |
c |
d |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
a |
3 |
b |
1 |
2 |
| ||
2 |
x |
a |
b |
y |
a |
b |
x |
y |
3 |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆河南省長葛市第三實驗高中高三上學(xué)期期中考試數(shù)學(xué)文卷 題型:解答題
(本小題滿分12分)
已知平面向量a=,b=
(1)證明ab;
(2)若存在實數(shù)k,t,使x=a+b,y=-ka+tb,且xy,試求k,t的函數(shù)關(guān)系式;
(3)根據(jù)(2)的結(jié)論,討論關(guān)于t的方程的解的情況。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省長葛市高三上學(xué)期期中考試數(shù)學(xué)文卷 題型:解答題
(本小題滿分12分)
已知平面向量a=,b=
(1)證明ab;
(2)若存在實數(shù)k,t,使x=a+b,y=-ka+tb,且xy,試求k,t的函數(shù)關(guān)系式;
(3)根據(jù)(2)的結(jié)論,討論關(guān)于t的方程的解的情況。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省長葛市高三上學(xué)期期中考試數(shù)學(xué)文卷 題型:解答題
(本小題滿分12分)
已知平面向量a=,b=
(1)證明ab;
(2)若存在實數(shù)k,t,使x=a+b,y=-ka+tb,且xy,試求k,t的函數(shù)關(guān)系式;
(3)根據(jù)(2)的結(jié)論,討論關(guān)于t的方程的解的情況。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com