【題目】記邊長為1的正六邊形的六個頂點分別為、,集合,在中任取兩個元素、,則的概率為________

【答案】

【解析】

先以的中點為坐標原點,以所在直線為軸,以的垂直平分線為軸,建立平面直角坐標系,得到各頂點坐標,列舉出集合中所有元素,以及滿足條件的組合,根據(jù)古典概型的概率計算公式,即可求出結果.

的中點為坐標原點,以所在直線為軸,以的垂直平分線為軸,建立如圖所示的平面直角坐標系,

因為正六邊形的邊長為

所以易得:、、、,

因此,,,,,,,,,,;

個向量.

因此中含有個不同的元素.

又在中任取兩個元素、,滿足的有:;; ;;;; ;;;;共種選法,又由、的任意性,因此滿足的情況共有:種;

又在中任取兩個元素、,共有種情況;

因此,滿足的概率為:.

故答案為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,側棱與底面垂直的四棱柱ABCD,A1B1C1D1的底面是梯形,ABCD,ABAD,AA14,DC2AB,ABAD3,點M在棱A1B1上,且A1MA1B1.已知點E是直線CD上的一點,AM∥平面BC1E.

(1)試確定點E的位置,并說明理由;

(2)求三棱錐M-BC1E的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角、所對的邊分別為、、,.

1)若,求的值;

2)若,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列敘述正確的是(

A.命題pq為真,則恰有一個為真命題

B.命題已知,則的充分不必要條件

C.命題都有,則,使得

D.如果函數(shù)在區(qū)間上是連續(xù)不斷的一條曲線,并且有,那么函數(shù)在區(qū)間內有零點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8.

有時可用函數(shù)

描述學習某學科知識的掌握程度,其中x表示某學科知識的學習次數(shù)(),表示對該學科知識的掌握程度,正實數(shù)a與學科知識有關.

1) 證明:當時,掌握程度的增加量總是下降;

2) 根據(jù)經驗,學科甲、乙、丙對應的a的取值區(qū)間分別為,,

.當學習某學科知識6次時,掌握程度是85%,請確定相應的學科.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖象向右平移個單位長度得到的圖象,若的對稱中心為坐標原點,則關于函數(shù)有下述四個結論:

的最小正周期為 ②若的最大值為2,則

有兩個零點 在區(qū)間上單調

其中所有正確結論的標號是(

A.①③④B.①②④C.②④D.①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為奇函數(shù),a為常數(shù).

1)求a的值;

2)判斷函數(shù)時單調性并證明;

3)若對于區(qū)間上的每一個x的值,不等式恒成立,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新能源汽車是我國汽車工業(yè)由大變強的一條必經之路!國家對其給予政策上的扶持,己成為我國的戰(zhàn)略方針.近年來,我國新能源汽車制造蓬勃發(fā)展,某著名車企自主創(chuàng)新,研發(fā)了一款新能源汽車,經過大數(shù)據(jù)分析獲得:在某種路面上,該品牌汽車的剎車距離(米)與其車速(千米/小時)滿足下列關系:是常數(shù)).(行駛中的新能源汽車在剎車時由于慣性作用,要繼續(xù)往前滑行一段距離才能停下,這段距離叫做剎車距離).如圖是根據(jù)多次對該新能源汽車的實驗數(shù)據(jù)繪制的剎車距離(米)與該車的車速(千米/小時)的關系圖.該新能源汽車銷售公司為滿足市場需求,國慶期間在甲、乙兩地同時展銷該品牌的新能源汽車,在甲地的銷售利潤(單位:萬元)為,在乙地的銷售利潤(單位:萬元)為,其中為銷售量(單位:輛).

(1)若該公司在兩地共銷售20輛該品牌的新能源汽車,則能獲得的最大利潤是多少?

(2)如果要求剎車距離不超過25.2米,求該品牌新能源汽車行駛的最大速度.

查看答案和解析>>

同步練習冊答案