(2013•汕尾二模)已在點(diǎn)C在圓O的直徑BE的延長線上,直線CA與圓O相切于點(diǎn)A,∠ACB的平分線分別交AB、AE于點(diǎn)D、F,則∠ADF=
45°
45°
分析:因?yàn)锳C為圓O的切線,由弦切角定理,則∠B=∠EAC.又CD平分∠ACB,則∠ACD=∠BCD,兩式相加,∠B+∠BCD=∠EAC+∠ACD,根據(jù)三角形外角定理,∠ADF=∠AFD,又∠BAE=90°,,△ADF是等腰直角三角形,所以∠ADF=∠AFD=45°.
解答:解:因?yàn)锳C為圓O的切線,由弦切角定理,則∠B=∠EAC.
又CD平分∠ACB,則∠ACD=∠BCD.
所以∠B+∠BCD=∠EAC+∠ACD.
根據(jù)三角形外角定理,∠ADF=∠AFD,
因?yàn)锽E是圓O的直徑,則∠BAE=90°,△ADF是等腰直角三角形,
所以∠ADF=∠AFD=45°.
故答案為:45°
點(diǎn)評(píng):本題考查有關(guān)圓的角的計(jì)算.根據(jù)圖形尋找角的關(guān)系,合理進(jìn)行聯(lián)系與轉(zhuǎn)化是此類題目的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•汕尾二模)cos150°的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•汕尾二模)如圖,四棱錐P-ABCD的底面ABCD為矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(Ⅰ)求證:DA⊥平面PAB;
(Ⅱ) 求直線PC與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•汕尾二模)同樣規(guī)格的黑、白兩色正方形瓷磚鋪設(shè)的若干圖案,則按此規(guī)律第23個(gè)圖案中需用黑色瓷磚
100
100
塊.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•汕尾二模)如圖所示:有三根針和套在一根針上的若干金屬片.按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.
(1)每次只能移動(dòng)一個(gè)金屬片;
(2)在每次移動(dòng)過程中,每根針上較大的金屬片不能放在較小的金屬片上面.將n個(gè)金屬片從1號(hào)針移到3號(hào)針最少需要移動(dòng)的次數(shù)記為f(n);
①f(3)=
7
7
;
②f(n)=
2n-1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•汕尾二模)已知正方體被過一面對(duì)角線和它對(duì)面兩棱中點(diǎn)的平面截去一個(gè)三棱臺(tái)后的幾何體的主(正)視圖和俯視圖如下,則它的左(側(cè))視圖是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案