在梯形ABCD中,
AB
=2
DC
,AC與BD相交于O點(diǎn).若
AB
=
a
,
AD
=
b
,則
OC
=(  )
分析:由△AOB∽△COD,結(jié)合向量的數(shù)乘可得
OC
=
1
3
AC
=
1
3
AD
+
DC
),由
AB
=2
DC
代入化簡(jiǎn)可得.
解答:解:由題意可得AB=2CD.
由△AOB∽△COD 可得
1
2
=
CD
AB
=
OC
OA
,
∴AO=
2
3
AC,
OC
=
1
3
AC
=
1
3
AD
+
DC

=
1
3
AD
+
1
2
AB
)=
1
6
AB
+
1
3
AD

=
1
6
a
+
1
3
b

故選A
點(diǎn)評(píng):本題考查平面向量基本數(shù)列及其意義,涉及向量的加減和數(shù)乘的運(yùn)算,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=a,點(diǎn)M在線段EF上.
(1)求證:BC⊥平面ACFE;
(2)當(dāng)EM為何值時(shí),AM∥平面BDF?證明你的結(jié)論;
(3)求二面角B-EF-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在梯形ABCD中,AB∥CD,AB=2CD,M,N分別是CD,AB的中點(diǎn),設(shè)
AB
=
a
,
AD
=
b
.若
MN
=m
a
+n
b
,則
n
m
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高中新教材同步教學(xué)·高一數(shù)學(xué) 題型:013

如圖,在梯形ABCD中,=a,=b=c,=d,E、F分別為AB、CD的中點(diǎn),則下列表達(dá)中成立的是

[  ]

A.=(abcd)
B.=(abcd)
C.=(cdab)
D.=(abcd)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:013

如圖,在梯形ABCD中,=a,=b,=c,=d,E、F分別為AB、CD的中點(diǎn),則下列表達(dá)中成立的是

[  ]

A.=(abcd)
B.=(abcd)
C.=(cdab)
D.=(abcd)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如下圖,在梯形ABCD中,=a,=b,=c,=d,E、F分別為AB、CD的中點(diǎn),則下列表達(dá)中成立的是(    )

A.=a+b+c+d)                   B.=c+d-a-b

C.=a+b-c-d)                     D.=a-b+c-d

查看答案和解析>>

同步練習(xí)冊(cè)答案