若△ABC的三個(gè)內(nèi)角滿足sinA:sinB:sinC=5:7:8,則△ABC的最大內(nèi)角的余弦值為
1
7
1
7
分析:已知等式利用正弦定理化簡(jiǎn),得出三邊之比,得到最大角C,利用余弦定理即可求出cosC的值.
解答:解:已知等式利用正弦定理化簡(jiǎn)得:a:b:c=5:7:8,
設(shè)a=5k,b=7k,c=8k,
則cosC=
a2+b2-c2
2ab
=
25k2+49k2-64k2
70k2
=
1
7
,即△ABC的最大內(nèi)角的余弦值為
1
7

故答案為:
1
7
點(diǎn)評(píng):此題考查了正弦、余弦定理,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、若△ABC的三個(gè)內(nèi)角滿足sinA:sinB:sinC=5:12:13,則△AB形狀一定是
直角
角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的三個(gè)內(nèi)角滿足sinA:sinB:sinC=2:3:4,則△ABC( 。
A、一定是直角三角形B、一定是鈍角三角形C、一定是銳角三角形D、可能是銳角三角形,也可能是鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的三個(gè)內(nèi)角滿足sinA:sinB:sinC=5:11:13,則△ABC是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的三個(gè)內(nèi)角成等差數(shù)列,三邊成等比數(shù)列,則△ABC是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•盧灣區(qū)二模)若△ABC的三個(gè)內(nèi)角的正弦值分別等于△A'B'C'的三個(gè)內(nèi)角的余弦值,則△ABC的三個(gè)內(nèi)角從大到小依次可以為
4
,
π
8
π
8
;
4
,另兩角不惟一,但其和為
π
4
4
π
8
π
8
;
4
,另兩角不惟一,但其和為
π
4
(寫出滿足題設(shè)的一組解).

查看答案和解析>>

同步練習(xí)冊(cè)答案