已知點F是拋物線C:的焦點,S是拋物線C在第一象限內(nèi)的點,且|SF|=.

(Ⅰ)求點S的坐標(biāo);
(Ⅱ)以S為圓心的動圓與軸分別交于兩點A、B,延長SA、SB分別交拋物線C于M、N兩點;
①判斷直線MN的斜率是否為定值,并說明理由;
②延長NM交軸于點E,若|EM|=|NE|,求cos∠MSN的值.
(Ⅰ);(Ⅱ)①詳見解析,②

試題分析:(1)由拋物線定義等于點到準(zhǔn)線的距離,可求點的橫坐標(biāo),代入拋物線方程求點的縱坐標(biāo);(2)由已知直線斜率互為相反數(shù),可設(shè)其中一條斜率為,寫出直線方程并與拋物線聯(lián)立之得關(guān)于的二次方程(其中有一根為1),或的一元二次方程(其中有一根為1),再利用韋達(dá)定理并結(jié)合直線方程,求出點的坐標(biāo),然后用代替得點的坐標(biāo),代入斜率公式看是否定值即可;(3)依題意,利用向量式得三點坐標(biāo)間的關(guān)系,從而求,進(jìn)而可求直線的方程,再確定兩點坐標(biāo),在中利用余弦定理求.
試題解析:(1)設(shè)(>0),由已知得F,則|SF|=,∴=1,∴點S的坐標(biāo)是(1,1);
(2)①設(shè)直線SA的方程為
,∴.
由已知SA=SB,∴直線SB的斜率為,∴ ∴
②設(shè)E(t,0),∵|EM|=|NE|,∴
 ,則 ∴直線SA的方程為,則,同理 ,∴
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,其中左焦點(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,點B與點A(-1,1)關(guān)于原點O對稱,P是動點,且直線AP與BP的斜率之積等于.
(1)求動點P的軌跡方程;
(2)設(shè)直線AP和BP分別與直線x=3交于點M,N,問:是否存在點P使得△PAB與△PMN的面積相等?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線,求曲線過點的切線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的左焦點為,且橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)橢圓的上下頂點分別為,是橢圓上異于的任一點,直線分別交軸于點,證明:為定值,并求出該定值;
(3)在橢圓上,是否存在點,使得直線與圓相交于不同的兩點,且的面積最大?若存在,求出點的坐標(biāo)及對應(yīng)的的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知一個圓的圓心為坐標(biāo)原點,半徑為.從這個圓上任意一點軸作垂線,為垂足.
(Ⅰ)求線段中點的軌跡方程;
(Ⅱ)已知直線的軌跡相交于兩點,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動點到定點的距離之和為.
(Ⅰ)求動點軌跡的方程;
(Ⅱ)設(shè),過點作直線,交橢圓異于兩點,直線的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩定點,如果動點滿足,則點的軌跡所包圍的圖形的面積等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓內(nèi)的一點,過點P的弦恰好以P為中點,那么這弦所在的直線方程(   )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案