若復(fù)數(shù)x+3-yi與2+xi互為共軛復(fù)數(shù),x,y∈R,則|y+xi|=( 。
A、1
B、
2
C、
3
D、
5
分析:由復(fù)數(shù)x+3-yi與2+xi互為共軛復(fù)數(shù),則它們的實(shí)部相等,虛部互為相反數(shù),由此列式求出x,y的值,則|y+xi|可求.
解答:解:∵x,y∈R,且復(fù)數(shù)x+3-yi與2+xi互為共軛復(fù)數(shù),
x+3=2
-y=-x
,解得:
x=-1
y=-1
,
∴|y+xi|=|-1-i|=
(-1)2+(-1)2
=
2

故選:B.
點(diǎn)評:本題考查了復(fù)數(shù)的基本概念,考查了復(fù)數(shù)相等的條件及復(fù)數(shù)模的求法,是基礎(chǔ)的計算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)β=x+yi(x,y∈R)與復(fù)平面上點(diǎn)P(x,y)對應(yīng).
(1)若β是關(guān)于t的一元二次方程t2-2t+m=0(m∈R)的一個虛根,且|β|=2,求實(shí)數(shù)m的值;
(2)設(shè)復(fù)數(shù)β滿足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*、常數(shù)a∈ (
3
2
 , 3)
),當(dāng)n為奇數(shù)時,動點(diǎn)P(x、y)的軌跡為C1.當(dāng)n為偶數(shù)時,動點(diǎn)P(x、y)的軌跡為C2.且兩條曲線都經(jīng)過點(diǎn)D(2,
2
)
,求軌跡C1與C2的方程;
(3)在(2)的條件下,軌跡C2上存在點(diǎn)A,使點(diǎn)A與點(diǎn)B(x0,0)(x0>0)的最小距離不小于
2
3
3
,求實(shí)數(shù)x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)β=x+yi(x、y∈R)與復(fù)平面上點(diǎn)P(x,y)對應(yīng).
(1)若β是關(guān)于t的一元二次方程t2-2t+m=0(m∈R)的一個虛根,且|β|=2|,求實(shí)數(shù)m的值.
(2)設(shè)復(fù)數(shù)β滿足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*a∈(
3
2
,3)
),當(dāng)n為奇數(shù)時,動點(diǎn)P(x,y)的軌跡為C1;當(dāng)n為偶數(shù)時,動點(diǎn)P(x,y)的軌跡為C2,且兩條曲線都經(jīng)過點(diǎn)D(2,
2
)
,求軌跡C1與的C2方程?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市浦東新區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

設(shè)復(fù)數(shù)β=x+yi(x,y∈R)與復(fù)平面上點(diǎn)P(x,y)對應(yīng).
(1)若β是關(guān)于t的一元二次方程t2-2t+m=0(m∈R)的一個虛根,且|β|=2,求實(shí)數(shù)m的值;
(2)設(shè)復(fù)數(shù)β滿足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*、常數(shù)),當(dāng)n為奇數(shù)時,動點(diǎn)P(x、y)的軌跡為C1.當(dāng)n為偶數(shù)時,動點(diǎn)P(x、y)的軌跡為C2.且兩條曲線都經(jīng)過點(diǎn),求軌跡C1與C2的方程;
(3)在(2)的條件下,軌跡C2上存在點(diǎn)A,使點(diǎn)A與點(diǎn)B(x,0)(x>0)的最小距離不小于,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市浦東新區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)復(fù)數(shù)β=x+yi(x,y∈R)與復(fù)平面上點(diǎn)P(x,y)對應(yīng).
(1)若β是關(guān)于t的一元二次方程t2-2t+m=0(m∈R)的一個虛根,且|β|=2,求實(shí)數(shù)m的值;
(2)設(shè)復(fù)數(shù)β滿足條件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*、常數(shù)),當(dāng)n為奇數(shù)時,動點(diǎn)P(x、y)的軌跡為C1.當(dāng)n為偶數(shù)時,動點(diǎn)P(x、y)的軌跡為C2.且兩條曲線都經(jīng)過點(diǎn),求軌跡C1與C2的方程;
(3)在(2)的條件下,軌跡C2上存在點(diǎn)A,使點(diǎn)A與點(diǎn)B(x,0)(x>0)的最小距離不小于,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案