二次函數(shù)f(x)滿足f(4+x)=f(-x),且f(2)=1,f(0)=3,若f(x)在[0,m]上有最小值1,最大值3,則實(shí)數(shù)m的取值范圍是
[2,4]
[2,4]
分析:先確定函數(shù)的解析式,再根據(jù)f(x)在[0,m]上有最小值1,最大值3,即可求得實(shí)數(shù)m的取值范圍.
解答:解:∵二次函數(shù)f(x)滿足f(4+x)=f(-x),
∴函數(shù)的對(duì)稱軸為直線x=2,故可設(shè)函數(shù)解析式為f(x)=a(x-2)2+h,
∵f(2)=1,f(0)=3,
h=1
4a+h=3
,解得
h=1
a=
1
2

∴f(x)=
1
2
(x-2)2+1
1
2
(x-2)2+1=3,則x=0或x=4
∵f(x)在[0,m]上有最小值1,最大值3,
∴實(shí)數(shù)m的取值范圍是[2,4].
故答案為:[2,4].
點(diǎn)評(píng):本題考查二次函數(shù)的性質(zhì),考查函數(shù)的解析式,解題的關(guān)鍵是確定函數(shù)的解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1,則函數(shù)y=f(x)-3的零點(diǎn)是
-1,2
-1,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)滿足:①在x=1時(shí)有極值;②二次函數(shù)圖象過(guò)點(diǎn)(0,-3),且在該點(diǎn)處的切線與直線2x+y=0平行.
(1)求f(x)的解析式;
(2)求函數(shù)g(x)=f(x2)的單調(diào)遞增區(qū)間與極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知f(
x
+1)=x+2
,求函數(shù)f(x)的解析式;
(2)若二次函數(shù)f(x)滿足f(x+1)-f(x)=2x且f(0)=1,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)f(x)滿足:f(0)=2,f(x)=f(-2-x),它的導(dǎo)函數(shù)的圖象與直線y=2x平行.
(I)求f(x)的解析式;
(II)若函數(shù)g(x)=xf(x)-x的圖象與直線y=m有三個(gè)公共點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知一次函數(shù)f(x)滿足條件:f(3)=7,f(5)=-1,求f(0),f(1)的值;
(2)已知二次函數(shù)f(x)滿足條件:f(0)=1,f(x+1)-f(x)=2x,求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案