A. | 4 | B. | $\sqrt{17}$ | C. | 17 | D. | 16 |
分析 先根據(jù)約束條件畫出可行域,再利用z=(x-1)2+y2的幾何意義表示點(diǎn)(1,0)到可行域的點(diǎn)的距離的平方,求最值,即可.
解答 解:根據(jù)約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-2y+6≥0}\\{x≤2}\end{array}\right.$,畫出可行域:
z=(x-1)2+y2表示B(1,0)到可行域的距離的平方,由$\left\{\begin{array}{l}{x=2}\\{x-2y+6=0}\end{array}\right.$解得A(2,4),
當(dāng)點(diǎn)B與點(diǎn)A(2,4)連線時(shí),AB距離最大,
則z=(x-1)2+y2的最大值是A(2,4)到B(1,0)
的距離的平方為:17,
故選:C.
點(diǎn)評 本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{6}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2+sinx | B. | y=cosx | C. | y=lnx | D. | y=ex-e-x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (0,2) | C. | (1,1) | D. | (1,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x≠0且y≠0 | B. | x=0且y≠0 | C. | x≠0或y≠0 | D. | x=0或y=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com