【題目】如圖,梯形ABCD中,AD∥BC,AD⊥AB,AD=1,BC=2,AB=3,P是AB上的一個(gè)動(dòng)點(diǎn),∠CPB=α,∠DPA=β. (Ⅰ)當(dāng) 最小時(shí),求tan∠DPC的值;
(Ⅱ)當(dāng)∠DPC=β時(shí),求 的值.

【答案】解:(Ⅰ)以A為原點(diǎn),AB所在直線為x軸, 建立如圖所示的直角坐標(biāo)系.
則A(0,0),B(3,0),C(3,2),
D(0,1),令P(x,0),0≤x≤3

所以 ,
當(dāng) 時(shí), 最小
此時(shí) ,在△CPB中, ,
在△DPA中,
所以 ,
(Ⅱ)由(Ⅰ)知, ,

∵∠DPC=β,∴α=π﹣2β,tanα=﹣tan2β
整理得:
此時(shí)

【解析】(I)以A為原點(diǎn),AB所在直線為x軸,分別寫出點(diǎn)A,B,C,D,P的坐標(biāo),利用數(shù)量積和二次函數(shù)的單調(diào)性\兩角和的正切公式即可得出;(II)利用誘導(dǎo)公式和倍角公式即可得出.
【考點(diǎn)精析】本題主要考查了兩角和與差的正切公式的相關(guān)知識(shí)點(diǎn),需要掌握兩角和與差的正切公式:才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程22x﹣(m﹣1)2x+2=0在x∈[0,2]時(shí)有唯一解,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 與向量 =(2,﹣1,2)共線,且滿足 =18,(k + )⊥(k ),求向量 及k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=cos2x+asinx在區(qū)間( , )是減函數(shù),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos2(x+ ),g(x)=1+ sin2x.
(1)設(shè)x=x0是函數(shù)y=f(x)圖象的一條對(duì)稱軸,求g(x0)的值.
(2)設(shè)函數(shù)h(x)=f(x)+g(x),若不等式|h(x)﹣m|≤1在[﹣ ]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在四面體中,,,,則四面體外接球的表面積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程C:x2+y2﹣2x﹣4y+m=0,
(1)若方程C表示圓,求實(shí)數(shù)m的范圍;
(2)在方程表示圓時(shí),該圓與直線l:x+2y﹣4=0相交于M、N兩點(diǎn), ,求m的值;
(3)在(2)的條件下,定點(diǎn)A(1,0),P在線段MN上運(yùn)動(dòng),求直線AP的斜率取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】供電部門對(duì)某社區(qū)位居民2016年11月份人均用電情況進(jìn)行統(tǒng)計(jì)后,按人均用電量分為, , , , 五組,整理得到如下的頻率分布直方圖,則下列說法錯(cuò)誤的是( )

A. 11月份人均用電量人數(shù)最多的一組有

B. 11月份人均用電量不低于度的有

C. 11月份人均用電量為

D. 在這位居民中任選位協(xié)助收費(fèi),選到的居民用電量在一組的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且

當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

求函數(shù)的單調(diào)區(qū)間;

若函數(shù)有最值,寫出的取值范圍.(只需寫出結(jié)論

查看答案和解析>>

同步練習(xí)冊(cè)答案