二次函數(shù)y=-(x-2)2-1的圖象的開(kāi)口方向和頂點(diǎn)坐標(biāo)是( 。
A、開(kāi)口向上,(-2,-1)
B、開(kāi)口向上,(-2,-1)
C、開(kāi)口向下,(2,-1)
D、開(kāi)口向下,(-2,-1)
考點(diǎn):二次函數(shù)的性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:化簡(jiǎn)二次函數(shù),判斷開(kāi)口方向,直接求解頂點(diǎn)坐標(biāo).
解答: 解:二次函數(shù)y=-(x-2)2-1是頂點(diǎn)式形式,所以頂點(diǎn)坐標(biāo)(2,-1).
二次函數(shù)y=-(x-2)2-1=-x2+4x-5,開(kāi)口向下.
故選:C.
點(diǎn)評(píng):本題考查二次函數(shù)的基本性質(zhì)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線x-y+1=0與圓(x-a)2+y2=2有公共點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的前三項(xiàng)為1,2,4,則a6=(  )
A、8B、32C、16D、64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)Z=2+arcsinx+(π-3)xi,(x∈R,i是虛數(shù)單位),在復(fù)平面上的對(duì)應(yīng)點(diǎn)只可能位于 ( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=(
2
7
 
2
7
,b=(
2
7
 
3
7
,c=(
3
7
 
2
7
,則a、b、c的大小關(guān)系是( 。
A、a>c>b
B、a>b>c
C、c>a>b
D、b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿足:對(duì)任意x1,x2∈R,都有f(
x1+x2
2
)≤
f(x1)+f(x2)
2
,則稱(chēng)函數(shù)f(x)是R上的凹函數(shù).已知二次函數(shù)f(x)=ax2+x(a∈R,a>0).
(1)求證:函數(shù)f(x)是凹函數(shù).
(2)求f(x)在[-1,1]上的最小值g(a),并求出g(a)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=kx+1 在[-1,1]上恒為正數(shù),則實(shí)數(shù)k的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=cos
5
,b=30.3,c=log53,則(  )
A、c<b<q
B、c<a<b
C、a<c<b
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|
1
2
≤2x≤8,x∈R},B={x|2-m≤x≤2+m,x∈R},
(1)若A∩B=[0,3],求實(shí)數(shù)m的值;
(2)若B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案