已知f(x)是定義在R上的函數(shù),f(1)=10,且對于任意x∈R都有f(x+20)≥f(x)+20,f(x+1)≤f(x)+1,若g(x)=f(x)-x+1,則g(10)=________.
10
分析:解決此題關鍵是要分析出f(x)或g(x)的性質(zhì),根據(jù)f(x+20)≥f(x)+20,f(x+1)≤f(x)+1,若g(x)=f(x)+1-x,不難得到g(x)是一個周期函數(shù),且周期T=1,則只要根據(jù)f(1)=10,g(x)=f(x)+1-x求出g(1)就不難求出g(x)的其它函數(shù)值.
解答:由g(x)=f(x)+1-x知f(x)=g(x)+x-1,從而有
g(x+20)+(x+20)-1≥f(x+20)≥f(x)+20=g(x)+x-1+20
則g(x+20)≥g(x)
又由f(x+1)≤f(x)+1得g(x+1)+(x+1)-1≤g(x)+x-1+1?g(x+1)≤g(x)
則有:g(x)≤g(x+20)≤g(x+19)≤…≤g(x+1)≤g(x)
得g(x)=g(x+1),即g(x)是周期為1的周期函數(shù),
又∵g(1)=f(1)+1-1=10
∴g(10)=10
故答案為 10
點評:對于抽象函數(shù)問題的處理,有兩種思路,一是“湊”出題目中要求的值,二是分析函數(shù)性質(zhì)根據(jù)函數(shù)的性質(zhì)解題.若題干中出現(xiàn):f(x+y)=f(x)•f(y);f(x+y)=f(x)+f(y);f(x•y)=f(x)•f(y);f(x•y)=f(x)+f(y)類的條件時一般采用第一種思路,而本題中未出現(xiàn)這種情況,一般要采用第二種思路.