10.拋物線y2=4x上一點(diǎn)A到它焦點(diǎn)F的距離為4,則直線AF的斜率為$±\sqrt{3}$.

分析 求出拋物線的焦點(diǎn)坐標(biāo),設(shè)出A,利用拋物線y2=4x上一點(diǎn)A到它焦點(diǎn)F的距離為4,求出A的橫坐標(biāo),然后求解斜率.

解答 解:由題可知焦點(diǎn)F(1,0),準(zhǔn)線為x=-1
設(shè)點(diǎn)A(xA,yA),
∵拋物線y2=4x上一點(diǎn)A到它焦點(diǎn)F的距離為4,
∴點(diǎn)A到其準(zhǔn)線的距離為4,
∴xA+1=4,
∴xA=3,
∴yA=±2$\sqrt{3}$
∴點(diǎn)A(3,$±2\sqrt{3}$),
∴直線AF的斜率為$±\sqrt{3}$,
故答案為:$±\sqrt{3}$.

點(diǎn)評(píng) 本題考查拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用,直線與拋物線的位置關(guān)系,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\overrightarrow{a}$=(1,-1),$\overrightarrow{a}$•$\overrightarrow$=0,|$\overrightarrow{a}$-$\overrightarrow$|=2,則|$\overrightarrow$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某儀器廠從新生產(chǎn)的一批零件中隨機(jī)抽取40個(gè)檢測(cè),如圖是根據(jù)抽樣檢測(cè)后零件的質(zhì)量(單位:克)繪制的頻率分布直方圖,樣本數(shù)據(jù)分8組,分別為[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],則樣本的中位數(shù)在( 。
A.第3組B.第4組C.第5組D.第6組

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)實(shí)數(shù)x,y滿足x+$\frac{y}{4}$=1.
(1)若|7-y|<2x+3,求x的取值范圍;
(2)若x>0,y>0,求證:$\sqrt{xy}$≥xy.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)=8lnx+15x-x2,數(shù)列{an}滿足an=f(n),n∈N+,數(shù)列{an}的前n項(xiàng)和Sn最大時(shí),n=( 。
A.15B.16C.17D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.用三段論演繹推理:任何實(shí)數(shù)的平方都大于0,a∈R,則a2>0.對(duì)于這段推理,下列說法正確的是( 。
A.大前提錯(cuò)誤,導(dǎo)致結(jié)論錯(cuò)誤B.小前提錯(cuò)誤,導(dǎo)致結(jié)論錯(cuò)誤
C.推理形式錯(cuò)誤,導(dǎo)致結(jié)論錯(cuò)誤D.推理沒有問題,結(jié)論正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知x,y滿足$\left\{\begin{array}{l}{y≥x}&{\;}\\{x+y≤2}&{\;}\\{x≥a}&{\;}\end{array}\right.$,且z=2x-y的最大值是最小值的-2倍,則a=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.甲乙二人爭(zhēng)奪一場(chǎng)圍棋比賽的冠軍,若比賽為“三局兩勝”制,甲在每局比賽中獲勝的概率均為$\frac{2}{3}$,且各局比賽結(jié)果相互獨(dú)立,則在甲獲得冠軍的情況下,比賽進(jìn)行了三局的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{2}{3}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知{an}是公差不為0的等差數(shù)列,Sn是其前n項(xiàng)和,若a2a3=a4a5,S4=27,則a1的值是$\frac{135}{8}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案