分析 根據(jù)題意,畫出可行域,求出最優(yōu)解,計算z=|x+y+4|的最小值與最大值即可.
解答 解:根據(jù)題意,實數(shù)x、y滿足$\left\{\begin{array}{l}{x-4y+3≤0}\\{3x+5y-25≤0}\\{x≥1}\end{array}\right.$,
畫出可行域,如圖所示;
求出最優(yōu)解,
則當(dāng)x=1,y=1時,z=|x+y+4|取得最小值zmin=1+1+4=6,
當(dāng)x=5,y=2時,z=|x+y+4|取得最大值zmax=5+2+4=11;
∴z的取值范圍是[6,11].
故答案為:[6,11].
點評 本題考查了線性規(guī)劃的應(yīng)用問題,解題時應(yīng)根據(jù)線性約束條件畫出可行域,求出最優(yōu)解,從而求出目標(biāo)函數(shù)的取值范圍,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{2015}{2016}$ | C. | $\frac{2016}{2015}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\sqrt{13}$ | C. | $\sqrt{14}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{2}$個單位長度 | B. | 向右平移$\frac{π}{2}$個單位長度 | ||
C. | 向左平移$\frac{π}{4}$個單位長度 | D. | 向右平移$\frac{π}{4}$個單位長度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com