4.設(shè)實數(shù)x、y滿足$\left\{\begin{array}{l}{x-4y+3≤0}\\{3x+5y-25≤0}\\{x≥1}\end{array}\right.$,則z=|x+y+4|的取值范圍為[6,11].

分析 根據(jù)題意,畫出可行域,求出最優(yōu)解,計算z=|x+y+4|的最小值與最大值即可.

解答 解:根據(jù)題意,實數(shù)x、y滿足$\left\{\begin{array}{l}{x-4y+3≤0}\\{3x+5y-25≤0}\\{x≥1}\end{array}\right.$,
畫出可行域,如圖所示;
求出最優(yōu)解,
則當(dāng)x=1,y=1時,z=|x+y+4|取得最小值zmin=1+1+4=6,
當(dāng)x=5,y=2時,z=|x+y+4|取得最大值zmax=5+2+4=11;
∴z的取值范圍是[6,11].
故答案為:[6,11].

點評 本題考查了線性規(guī)劃的應(yīng)用問題,解題時應(yīng)根據(jù)線性約束條件畫出可行域,求出最優(yōu)解,從而求出目標(biāo)函數(shù)的取值范圍,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)F1、F2分別是橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左、右焦點,P為橢圓上任一點,點M的坐標(biāo)為(6,4),則PM+PF1的最大值為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,角A,B,C所對邊的長分別為a,b,c,已知b=$\sqrt{2}$c,sinA+$\sqrt{2}$sinC=2sinB,則cosA=$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù)列{an}滿足a1=1,an•an+1=2n,則$\frac{{{a_{2016}}}}{{{a_{2015}}}}$=(  )
A.2B.$\frac{2015}{2016}$C.$\frac{2016}{2015}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.點P(1,2,3)到原點的距離是( 。
A.$\sqrt{5}$B.$\sqrt{13}$C.$\sqrt{14}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=4x2-kx-8在[5,+∞)上是單調(diào)遞增函數(shù),
(1)求實數(shù)k的取值范圍;
(2)當(dāng)k。1)問中的最大值時,設(shè)g(x)是定義在R上的奇函數(shù),當(dāng)x>0時,g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知:$f(x)=lg\frac{ax+1}{1-x}$,a∈R且a≠-1
(Ⅰ)若函數(shù)f(x)為奇函數(shù),求實數(shù)a的值;
(Ⅱ)求函數(shù)f(x)的定義域;
(Ⅲ)若函數(shù)f(x)在[10,+∞)上是單調(diào)增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=sin2x,為了得到g(x)=cos2x的圖象,只要將y=f(x)的圖象( 。
A.向左平移$\frac{π}{2}$個單位長度B.向右平移$\frac{π}{2}$個單位長度
C.向左平移$\frac{π}{4}$個單位長度D.向右平移$\frac{π}{4}$個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x2+2ax+1.
(1)求f(x)在區(qū)間[-1,2]的最小值g(a);
(2)求f(x)在區(qū)間[-1,2]的值域.

查看答案和解析>>

同步練習(xí)冊答案