6.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系. 已知直線l的極坐標(biāo)方程為ρ(sinθ-3cosθ)=0,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=t-\frac{1}{t}}\\{y=t+\frac{1}{t}}\end{array}\right.$  (t為參數(shù)),l與C相交于A,B兩點(diǎn),求|AB|的值.

分析 利用x=ρcosθ,y=ρsinθ將直線l方程化成普通方程,曲線C消去參數(shù)t化成普通方程,l與C相交于A,B兩點(diǎn),聯(lián)立方程組,求解A,B坐標(biāo),利用兩點(diǎn)之間的距離公式求解|AB|即可.

解答 解:直線l的極坐標(biāo)方程為ρ(sinθ-3cosθ)=0,即ρsinθ-3ρcosθ)=0
根據(jù)x=ρcosθ,y=ρsinθ,
可得:y-3x=0.
曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=t-\frac{1}{t}}\\{y=t+\frac{1}{t}}\end{array}\right.$  (t為參數(shù)),消去參數(shù)t,得:y2-x2=4
聯(lián)立方程組:$\left\{\begin{array}{l}{y-3x=0}\\{{y}^{2}-{x}^{2}=4}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}}\\{y=\frac{3\sqrt{2}}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}}\\{y=-\frac{3\sqrt{2}}{2}}\end{array}\right.$
即A:($\frac{\sqrt{2}}{2}$,$\frac{3\sqrt{2}}{2}$),B($-\frac{\sqrt{2}}{2}$,$-\frac{3\sqrt{2}}{2}$)
由兩點(diǎn)間的距離公式得:|AB|=$\sqrt{(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2})^{2}+(\frac{3\sqrt{2}}{2}+\frac{3\sqrt{2}}{2})^{2}}=2\sqrt{5}$.

點(diǎn)評(píng) 本題考查了參數(shù)方程化為普通方程的求法和兩點(diǎn)間的距離公式的計(jì)算.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.計(jì)算:
(1)(-2-i)(3-2i)                  
(2)$\frac{2+2i}{{{{(1+i)}^2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c且B=2A,則$\frac{c}{b-a}$的取值范圍是( 。
A.(0,3)B.(1,2)C.(2,3)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.中央電視臺(tái)電視公開(kāi)課《開(kāi)講了》需要現(xiàn)場(chǎng)觀眾,先邀請(qǐng)甲、乙、丙、丁四所大學(xué)的40名學(xué)生參加,各大學(xué)邀請(qǐng)的學(xué)生如表所示:
大學(xué)
人數(shù)812812
從這40名學(xué)生中按分層抽樣的方式抽取10名學(xué)生在第一排發(fā)言席就座.
(1)求各大學(xué)抽取的人數(shù);
(2)從(1)中抽取的乙大學(xué)和丁大學(xué)的學(xué)生中隨機(jī)選出2名學(xué)生發(fā)言,求這2名學(xué)生來(lái)自同一所大學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=$\frac{1-x}{1+x}$.
(1)若a∈R,且a≠0,求f(a-1);
(2)證明:f($\frac{1}{x}$)=-f(x)(x≠-1且x≠0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.橢圓C:$\frac{x^2}{4}$+$\frac{y^2}{3}$=1,直線l的極坐標(biāo)方程2ρcos(θ+$\frac{π}{3}$)+9=0.
(1)寫出橢圓C的參數(shù)方程及直線l的直角坐標(biāo)方程;
(2)設(shè)A(1,0),若橢圓C上的點(diǎn)P滿足到點(diǎn)A的距離與其到直線l的距離相等,求點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知A,B,C,D是同一球面上的四個(gè)點(diǎn),其中△ABC為正三角形,AD⊥平面ABC,AD=6,AB=3,則該球的表面積為( 。
A.45πB.24πC.32πD.48π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,邊長(zhǎng)為2的正方形ABCD中,點(diǎn)E在AB邊上,點(diǎn)F在BC邊上,
(Ⅰ)若點(diǎn)E是AB的中點(diǎn),點(diǎn)F是BC的中點(diǎn),將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于點(diǎn)A′.求證:A′D⊥EF.
(Ⅱ)當(dāng)BE=BF=$\frac{1}{4}$BC時(shí),求三棱錐A′-EFD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)集合A={1,2,3},B={1,3,5},則A∪B中的元素個(gè)數(shù)是4.

查看答案和解析>>

同步練習(xí)冊(cè)答案