已知a,b是實(shí)數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個(gè)極值點(diǎn).
(1)求a和b的值;
(2)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)g′(x)=f(x)+2,求g(x)的極值點(diǎn).
分析:(1)先求函數(shù)的導(dǎo)函數(shù),然后根據(jù)1和-1是函數(shù)f(x)=x3+ax2+bx的兩個(gè)極值點(diǎn),則f'(1)=0,f'(-1)=0,建立方程組,解之即可求出a與b的值;
(2)先求出g'(x)的解析式,求出g'(x)=0的根,判定函數(shù)的單調(diào)性,從而函數(shù)的g(x)的極值點(diǎn).
解答:解:(1)由f(x)=x3+ax2+bx,得f'(x)=3x2+2ax+b.
∵1和-1是函數(shù)f(x)=x3+ax2+bx的兩個(gè)極值點(diǎn),
∴f'(1)=3+2a+b=0,f'(-1)=3-2a+b=0,解得a=0,b=-3.
(2)∵由(1)得,f(x)=x3-3x,
∴g'(x)=f(x)+2=x3-3x+2=(x-1)2(x+2),解得x1=x2=1,x3=-2.
∵當(dāng)x<-2時(shí),g'(x)<0;當(dāng)-2<x<1時(shí),g'(x)>0,
∴x=-2是g(x)的極值點(diǎn).
∵當(dāng)-2<x<1或x>1時(shí),g'(x)>0,∴x=1不是g(x)的極值點(diǎn).
∴g(x)的極值點(diǎn)是-2.
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值,同時(shí)考查了計(jì)算能力和運(yùn)算求解的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點(diǎn).已知a,b是實(shí)數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個(gè)極值點(diǎn).
(1)求a和b的值;
(2)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)g'(x)=f(x)+2,求g(x)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江蘇)若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點(diǎn).已知a,b是實(shí)數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個(gè)極值點(diǎn).
(1)求a和b的值;
(2)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)g′(x)=f(x)+2,求g(x)的極值點(diǎn);
(3)設(shè)h(x)=f(f(x))-c,其中c∈[-2,2],求函數(shù)y=h(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年陜西省寶雞市金臺(tái)區(qū)高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知a,b是實(shí)數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個(gè)極值點(diǎn).
(1)求a和b的值;
(2)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)g′(x)=f(x)+2,求g(x)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省蚌埠市五河四中高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知a,b是實(shí)數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個(gè)極值點(diǎn).
(1)求a和b的值;
(2)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)g′(x)=f(x)+2,求g(x)的極值點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案