四棱錐的頂點(diǎn)P在底面ABCD中的投影恰好是A,其三視圖如圖所示,則四棱錐的表面積為
A.a2 | B.2a2 | C.a2 | D.(2+)a2 |
D
解析考點(diǎn):由三視圖求面積、體積.
專題:計(jì)算題.
分析:由四棱錐P-ABCD的頂點(diǎn)P在底面ABCD中的投影恰好是A,我們易得PA是棱錐的高,由三視圖我們易得底面邊長,及棱錐的高均為a,由此我們易求出各棱的長,進(jìn)而求出各個(gè)面的面積,進(jìn)而求出四棱錐P-ABCD的表面積.
解答:解:由三視圖我們易得四棱錐P-ABCD的底面棱長為a,高PA=a
則四棱錐P-ABCD的底面積為:a2
側(cè)面積為:S△PAB+S△PBC+S△PCD+S△PAD=2××a2+=2××a×a=2a2+a2,
則四棱錐P-ABCD的表面積為 2a2+a2
故選D.
點(diǎn)評(píng):本題考查由三視圖求幾何體的表面積,考查由三視圖看出幾何體中各個(gè)部分的長度,本題是一個(gè)基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖是由一些相同的小正方體構(gòu)成的主體圖形的三種視圖,構(gòu)成這個(gè)立體圖形的小正方體的個(gè)數(shù)是
A.3 | B.4 | C.5 | D.6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
、一個(gè)圓柱的側(cè)面展開圖是一個(gè)正方形,這個(gè)圓柱的全面積與側(cè)面積的比是( ).
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
.如圖是一個(gè)幾何體的三視圖,其中正視圖是腰長為2的等腰三角形,俯視圖是半徑為1的半圓,則該幾何體的體積是 ( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖為幾何體的三視圖,根據(jù)三視圖可以判斷這個(gè)幾何體為
A.圓錐 | B.三棱錐www.jkzyw.comwww.jkzyw.com |
C.三棱柱 | D.三棱臺(tái)w.jkzyw.com |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
若圓柱、圓錐的底面直徑和高都等于球的直徑,則圓柱、圓錐、球的體積的比為( )
A.1:2:3 | B.2:3:4 | C.3:2:4 | D.3:1:2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
若三棱柱的一個(gè)側(cè)面是邊長為2的正方形,另外兩個(gè)側(cè)面都是有一個(gè)內(nèi)角為的菱形,則該棱柱的體積等于 ( )
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com