(2008•湖北模擬)函數(shù)f(x)=
x2-1
(x≤-2)的反函數(shù)為(  )
分析:首先根據(jù)由 f(x)=
x2-1
解出x,根據(jù)反函數(shù)定義,將x、y互換,再由函數(shù) 函數(shù)f(x)=
x2-1
(x≤-2)求其值域,即為反函數(shù)的定義域,問題得解.
解答:解:由 y=
x2-1
解得:x=-
y2+1

即:y=-
x2+1

y=
x2-1
(x≤-2)
∴y≥
3

∴函數(shù)f(x)=
x2-1
(x≤-2)的反函數(shù)為 f-1(x)=-
x2+1
(x≥
3
)

故選A.
點(diǎn)評(píng):本題屬于基礎(chǔ)性題,解題思路清晰,解題方向明確,注意對(duì)反函數(shù)概念的靈活運(yùn)用;求反函數(shù)的解題過程一般分為三個(gè)層次,其一是把原函數(shù)看做方程利用指對(duì)互化解出x;其二是根據(jù)反函數(shù)定義x、y進(jìn)行互換,其三是定義域的確定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•湖北模擬)若等比數(shù)列的各項(xiàng)均為正數(shù),前n項(xiàng)之和為S,前n項(xiàng)之積為P,前n項(xiàng)倒數(shù)之和為M,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•湖北模擬)已知f(x)=ax3+bx2+cx+d為奇函數(shù),且在點(diǎn)(2,f(2))處的切線方程為9x-y-16=0.
(1)求f(x)的解析式;
(2)若y=f(x)+m的圖象與x軸僅有一個(gè)公共點(diǎn),求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•湖北模擬)某工廠去年某產(chǎn)品的年產(chǎn)量為100萬只,每只產(chǎn)品的銷售價(jià)為10元,固定成本為8元.今年,工廠第一次投入100萬元(科技成本),并計(jì)劃以后每年比上一年多投入100萬元(科技成本),預(yù)計(jì)產(chǎn)量年遞增10萬只,第n次投入后,每只產(chǎn)品的固定成本為g(n)=
k
n+1
(k>0,k為常數(shù),n∈Z且n≥0),若產(chǎn)品銷售價(jià)保持不變,第n次投入后的年利潤為f(n)萬元.
(1)求k的值,并求出f(n)的表達(dá)式;
(2)問從今年算起第幾年利潤最高?最高利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•湖北模擬)已知向量
a
=(1,2),向量
b
=(x,-2),且
a
∥(
a
-
b
)
,則實(shí)數(shù)x等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•湖北模擬)已知向量
a
=(2cosx,tan(x+α))
b
=(
2
sin(x+α),tan(x-α))
,已知角α(α∈(-
π
2
,
π
2
))
的終邊上一點(diǎn)P(-t,-t)(t≠0),記f(x)=
a
b

(1)求函數(shù)f(x)的最大值,最小正周期;
(2)作出函數(shù)f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

同步練習(xí)冊答案