直線
x
3
+
y
2
=1與4x+y-4=0相交于P,這兩直線與x軸分別相交于A1、A2,與y軸分別相交于B1、B2,若△PA1A2、△PB1B2的面積分別為S1、S2,則( 。
A、S1<S2
B、S1=S2
C、S1>S2
D、以上皆有可能
考點:點到直線的距離公式
專題:直線與圓
分析:由已知條件分別求出P(
3
5
,
8
5
),A1(3,0),B1(0,2),A2(1,0),B2(0,4),由此求出△PA1A2、△PB1B2的面積,從而能求出結(jié)果.
解答: 解:由
x
3
+
y
2
=1
4x+y-4=0
,得P(
3
5
8
5
),
∵直線
x
3
+
y
2
=1的橫截距為3,縱截距為2,
∴A1(3,0),B1(0,2),
∵4x+y-4=0中,x=0時,y=4,y=0時,x=1,
∴A2(1,0),B2(0,4),
S1=
1
2
(3-1)×
8
5
=
8
5

S2=
1
2
(4-2)×
3
5
=
3
5

∴S1>S2
故選:C.
點評:本題考查兩個三角形面積的大小的比較,解題時要認真審題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某程序框圖如圖所示,則該程序運行后輸出的結(jié)果為(  )
A、0.2B、0.4
C、0.6D、0.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點作直線l交拋物線于A、B兩點,若直線AB的斜率為2,則|AB|等于( 。
A、4B、5C、6D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A=45°,∠B=30°,∠A所對的邊為
2
,則∠B所對的邊為(  )
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖選項中的長方體中由如圖的平面圖形(其中,若干矩形被涂黑)圍成的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)g(x)=
x
,f(x)=kx2,其中k為常數(shù).
(1)求曲線g(x)在點(4,2)處的切線方程;
(2)如果函數(shù)f(x)的圖象也經(jīng)過點(4,2),求f(x)與(1)中的切線的交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A、B、C所對的邊分別為a、b、c,且tan
A-B
2
=
a-b
a+b
,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}為等差數(shù)列,且a2=-4,S7=0
(1)求數(shù)列{an}的通項公式;
(2)若等比數(shù)列{bn}滿足b1=-4,b2=a1+a2+a3,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是橢圓
x2
25
+
y2
9
=1的兩個焦點,P是橢圓上一點.
(1)寫出橢圓的焦點坐標,頂點坐標,長軸長,短軸長和離心率;
(2)求△PF1F2的周長;
(3)若∠F1PF2=60°,求△PF1F2的面積;
(4)若PF1⊥PF2,求點P的坐標.

查看答案和解析>>

同步練習(xí)冊答案