(2011•松江區(qū)二模)已知直線l1的方程為y=2x+3,若直線l2與l1關于直線y=-x對稱,則直線l2的斜率為
1
2
1
2
分析:由于直線l2與l1關于直線y=-x對稱,故可在l2上設點(x,y),關于直線y=-x對稱點的坐標為(-y,-x),代入直線l1的方程,可得直線l2的方程,從而可求斜率.
解答:解:在l2上設點(x,y),關于直線y=-x對稱點的坐標為(-y,-x),
∵直線l2與l1關于直線y=-x對稱,∴-x=-2y+3
即x-2y+3=0
∴直線l2的斜率為
1
2

故答案為
1
2
點評:本題的考點是與直線關于點、直線對稱的直線方程,主要考查直線關于直線的對稱問題,關鍵是轉化為點關于直線對稱點的問題,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•松江區(qū)二模)在(x+
1
3x
)5
的展開式的各項中任取一項,若其系數(shù)為奇數(shù)時得2分,其系數(shù)為偶數(shù)時得0分,現(xiàn)從中隨機取一項,則其得分的數(shù)學期望值是
4
3
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•松江區(qū)二模)在直線和曲線上各任取一點,若把這兩點間距離的最小值定義為直線與曲線間的距離,則直線2x+4y+13=0與橢圓
x2
9
+
y2
4
=1
間的距離為
3
5
10
3
5
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•松江區(qū)二模)已知函數(shù)①f(x)=lnx;②f(x)=cosx;③f(x)=ex;④f(x)=ecosx.其中對于f(x)定義域內的任意一個x1都存在唯一個x2,使f(x1)f(x2)=1成立的函數(shù)是
.(寫出所有滿足條件的函數(shù)的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•松江區(qū)二模)已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,沿EF將梯形ABCD翻折,使AE⊥平面EBCF(如圖).設AE=x,四面體DFBC的體積記為f(x).
(1)寫出f(x)表達式,并求f(x)的最大值;
(2)當x=2時,求二面角D-BF-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•松江區(qū)二模)我們把一系列向量
ai
(i=1,2,…,n)按次序排成一列,稱之為向量列,記作{
ai
}.已知向量列{
ai
}滿足:
a1
,
an
=
1
2
(xn-1-yn-1,xn-1+yn-1)
(n≥2).
(1)證明數(shù)列{|
ai
|}是等比數(shù)列;
(2)設θn表示向量
an-1
an
間的夾角,若bn=2nθn-1,Sn=b1+b2+…+bn,求Sn
(3)設|
an
|•log2|
an
|,問數(shù)列{cn}中是否存在最小項?若存在,求出最小項;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案