精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=(a、b為常數),且方程f(x)-x+12=0有兩個實根為x1=3,x2=4.

(1)求函數f(x)的解析式;

(2)設k>1,解關于x的不等式:f(x)<.

解:(1)將x1=3,x2=4分別代入方程-x+12=0,得

解之,得

所以f(x)=(x≠2).

(2)不等式即為,可化為<0,即(x-2)(x-1)(x-k)>0.

①當1<k<2時,解集為x∈(1,k)∪(2,+∞);

②當k=2時,不等式為(x-2)2(x-1)>0,解集為x∈(1,2)∪(2,+∞);

③當k>2時,解集為x∈(1,2)∪(k,+∞).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)
,
求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,則a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定義域上的遞減函數,則實數a的取值范圍是( 。
A、(
1
3
,1)
B、(
1
3
,
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
|x-1|-a
1-x2
是奇函數.則實數a的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
2x-2-x2x+2-x

(1)求f(x)的定義域與值域;
(2)判斷f(x)的奇偶性并證明;
(3)研究f(x)的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
x-1x+a
+ln(x+1)
,其中實數a≠1.
(1)若a=2,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)若f(x)在x=1處取得極值,試討論f(x)的單調性.

查看答案和解析>>

同步練習冊答案