已知曲線左、右焦點(diǎn)分別為F1、F2,若雙曲線的左支上有一點(diǎn)M到右焦點(diǎn)F2的距離為18,N是MF2的中點(diǎn),O為坐標(biāo)原點(diǎn),則|NO|等于( )
A.3
B.1
C.2
D.4
【答案】分析:利用ON是△MF1F2的中位線,ON=MF1,再由雙曲線的定義求出MF1,進(jìn)而得到 ON的值.
解答:解:∵曲線左、右焦點(diǎn)分別為F1、F2
左支上有一點(diǎn)M到右焦點(diǎn)F2的距離為18,N是MF2的中點(diǎn),
連接MF1,ON是△MF1F2的中位線,∴ON∥MF1,ON=MF1
∵由雙曲線的定義知,MF2-MF1=2×5,∴MF1=8.
ON=4,
故答案選D.
點(diǎn)評(píng):本題考查雙曲線的定義和性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在坐標(biāo)原點(diǎn)、焦點(diǎn)在x軸上橢圓的離心率e=
3
3
,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線y=x+2相切.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的左,右焦點(diǎn)分別是F1和F2,直線l1過F2且與x軸垂直,動(dòng)直線l2與y軸垂直,l2交l1于點(diǎn)P,求線段PF1的垂直平分線與l2的交點(diǎn)M的軌跡方程,并指明曲線類型.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別是橢圓
x2
4
+
y2
3
=1
的左,右焦點(diǎn),A為橢圓的上頂點(diǎn).曲線C是以坐標(biāo)原點(diǎn)為頂點(diǎn),以F2為焦點(diǎn)的拋物線,過點(diǎn)F1的直線l交曲線C于x軸上方兩個(gè)不同的點(diǎn)P,Q,設(shè)
F1P
F1Q

(Ⅰ)求曲線C的方程;
(Ⅱ)求△F1AF2的內(nèi)切圓的方程;
(Ⅲ)若λ=
1
4
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分) 已知橢圓的離心率,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切。(I)求a與b;(II)設(shè)橢圓的左,右焦點(diǎn)分別是F1和F2,直線且與x軸垂直,動(dòng)直線軸垂直,于點(diǎn)P,求線段PF1的垂直平分線與的交點(diǎn)M的軌跡方程,并指明曲線類型。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省黃山市休寧中學(xué)高三(上)數(shù)學(xué)綜合練習(xí)試卷1(文科)(解析版) 題型:解答題

已知中心在坐標(biāo)原點(diǎn)、焦點(diǎn)在x軸上橢圓的離心率,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線y=x+2相切.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的左,右焦點(diǎn)分別是F1和F2,直線l1過F2且與x軸垂直,動(dòng)直線l2與y軸垂直,l2交l1于點(diǎn)P,求線段PF1的垂直平分線與l2的交點(diǎn)M的軌跡方程,并指明曲線類型.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省黃山市休寧中學(xué)高三(上)數(shù)學(xué)綜合練習(xí)試卷1(文科)(解析版) 題型:解答題

已知中心在坐標(biāo)原點(diǎn)、焦點(diǎn)在x軸上橢圓的離心率,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線y=x+2相切.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的左,右焦點(diǎn)分別是F1和F2,直線l1過F2且與x軸垂直,動(dòng)直線l2與y軸垂直,l2交l1于點(diǎn)P,求線段PF1的垂直平分線與l2的交點(diǎn)M的軌跡方程,并指明曲線類型.

查看答案和解析>>

同步練習(xí)冊(cè)答案